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Abstract Advanced control for mobile robotic platforms allows efficient real-time
navigation in structured and unstructured environments in various industry appli-
cations. Deep reinforcement learning is an emerging control strategy where and
agent is trained iteratively according to an optimisation objective by using reward
and penalty actions. The agent generates the neural network weights used for com-
puting the robot command towards the reference set point. We present an appli-
cation for an open hardware mobile robotic platform navigation that integrates the
sensing, communication, computing and control functions into a single system for
navigation in unstructured environments. Implementation is performed through a
dedicated software and communication layer that integrates the hardware platform
with the MATLAB environment using standardized Robot Operating System (ROS)
libraries. Quantitative testing results are presented, in order to prove the viability of
the solution, by defining both simulation and laboratory setting scenarios.
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1 Introduction

Navigation of mobile robots in dynamic, unstructured, environments is relevant for
many industrial, operational and emergency recovery use cases. The main challenge
lays in the orchestration of the sensing, computing and control functions that allow
real-time object detection and avoidance while accounting for the tracking error
against the control objectives, Choi et al (2019).

Several recent works describe development of the algorithms used for mobile
robot platforms and include new approaches that are based on several types neural
networks, Fu et al (2019). These range from fully connected networks up to con-
volutional deep networks. In Shabbir and Anwer (2018), the authors state that most
of the applications built for navigation and control of mobile robots, are based on
computer vision, laser sensors or a combination of both. In Wang (2021), the au-
thors present one of the most commonly used method for interior navigation, which
is mapping the environment and computing the distance between the start and finish
points. In general, the computation of the trajectory is done using recursive algo-
rithms applied on two levels: one that is global and one locally, in order to avoid
object collision. This implementation does not use neural networks and has a main
drawback, that the platform has difficulties in regards of the environmental changes
that can occur. A novel approach for this consists of deploying a neural network
based algorithm that will gather data for the sensors. Based on that information, the
network will produce the best commands for the mobile platform to reach desired
location, avoiding any perturbation that can appear in its path. All is done without
prior knowledge of the surrounding space. The network is built using Reinforce-
ment Learning for finding the optimal route taking into account any obstruction.
Digital twin type simulation can contribute to the time and cost effective modelling
of the algorithms performance using a realistically model of the robotic platform,
Rosioru et al (2022). Industrial communication protocols, described in Luchian et al
(2021a) and in Luchian et al (2021b), serve as a supporting technology over which
the advanced control layer is implemented.

In this context, the main contributions of the work are argued to consist of: formu-
lation and implementation of a deep reinforcement learning (DRL) control method-
ology for a open hardware mobile robotic platform using standardized software and
communication components; testing and evaluation of the control performance of
the DRL technique in a dedicated simulation environment and through implemen-
tation on the physical platform in a real scenario.

The rest of the paper is structured as follows. Section II presents the methodol-
ogy of our work which includes both a theoretical background of the reinforcement
learning technique, combined with deep neural network architecture training for pa-
rameter prediction, and a description of the open hardware mobile robotic platform
used for the experiments. The in-depth implementation and analysis of results are
described in Section III. The focus is on the step-wise implementation of the RL
methodology, the heuristics used for the improvement of the control performance
and the evaluation in both simulation and real scenarios. Section IV concludes the
paper and lists potential relevant improvements for future work.
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2 Methodology

2.1 Reinforcement Learning

Reinforcement learning (RL) can be applied on general learning problems that opti-
mize a metric in a sequential way. Thus, reinforcement learning is suited for optimal
control and operation in robotic systems. It has close ties with statistics, optimiza-
tion, game theory etc. and can be used in many scientific scenarios. (Li (2022)). RL
is built by implementing a logic policy by simulating different case studies in which
an agent optimizes the cost function. The positive actions are rewarded while the
ones that have no benefit to the global goal are penalized. The objective of the op-
timization problem is to minimize the cost function in order to produce a desirable
control policy, reducing to:

G=Ro+Ri+..+R=YR (D
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Where G is the total reward at a moment of time. In a practical example, the infinite
horizon of steps becomes a finite one since we want the algorithm to run for a fixed
number of steps. The cost function can be written as R, = ¥'r;, where ¥ is the
discount factor.
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Function 7 represents the logic in which the probability P will implement the
action a as a state s. According to Peng et al (2020) and Han (2018) and introducing
two new performance evaluation functions, the state evaluation function, described
in equation 3, and the action evaluation function described in equation 4, we can
say that the critical network is trained according to Bellman model described in
equation 5, and the actor network is updated according to Bellman model described
in equation 6.

Vi(s) = Ex{Gl|s = s;} = Ex{R|s = s5:} + Ex{yVz(s)|s = 5141} 3)

where E{} is the statistical averaging operator, Ez{R;|s = s;} is the reward of state
s at the current ¢ or "immediate” time, denoted by R;n, and Ex{yVz(s)|s = sp41} is
the expected reward at the immediate next step, scaled by the discount factor ¥,
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with the notations mentioned in 3,

Vi(s) =) m(als)(Rin+7v ), P(s =5 @)V (s)) @)

acA s'es



4 Mihai-Daniel Pavel, Sabin Rosioru, Nicoleta Arghira and Grigore Stamatescu

where P(s — §',a) is the probability of reaching state s’ from the current state s
by action/transition a, and V; (s) is the optimal value of the state evaluation function,
considering the optimal 7(a|s) policy found,

Or(s,a) =Rim+7v Z P(s—s',a) Z n(d|s)QL(s',d") 6)
s'es aeA
with the same notations as in the equation 5.
Figure 1 illustrates how the RL algorithm must contain the two main components:
the agent and the training environment and also the interactions between the network
and the hardware equipment.
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Fig. 1: Reinforcement Learning Architecture

2.2 Open Hardware Mobile Robotic Platform

This section presents the design of the robotic platform used for the study and the
implementation of the deep reinforcement algorithm. The mobile robotic platform
consists of:

* Omnidirectional wheels: based on the complex geometrical arrangement of them,
the platform has a high degree of freedom, allowing for complex movements;



Control of Open Mobile Robotic Platform using Deep Reinforcement Learning 5

* Suspension system: perturbations caused by the vibration of the platform are
reduced in order to precisely position to the desired location;

e Lidar: used for scanning in order to accurate create a 3D map of the surrounding
environment;

e Depth camera: used for complex task as object identification or spatial orient-
ing; in combination with the integrated NVIDIA Jetson module, the platform is
capable of handling some of the latest and most complex optimization scenarios;

e Drive system: the mobile robot it is equipment with two drivers needed by the
motors for their synchronization.

In addition to the physical equipment, a complex software architecture runs in
parallel. ROS, or Robot Operating System, is the open-source programming lan-
guage used for mobile robot programming. Three main component have been deter-
mined to compose an robot system: the perception of the surrounding, the logic used
for calculations and the output used by the physical equipment, as shown in Figure
2. In order to evaluate the environment the mobile platform is equipped multiple
sensors, including the depth camera enabling a large field of possible applications.
In the logic part of the structure, either C++ or Python programming languages can
be used, each with its one advantages and disadvantages. In general, a mobile robot
uses DC or stepper motors to execute movement commands. In our case, the robot
is using 4 DC motors to move. The operation of the DC motors is done by the inte-
grated CANOpen module that receives the computed commands from the NVIDIA
board and transforms them into usable information for the drivers. A summary of the
main relevant technical specifications of the mobile robotic platform components is
listed in Table I.

Perception Logic Operating

> —
i S N SO S

Signal ROS DC Stepper
Processing Nodes Motor Motor

LIDAR IMU Camera

Fig. 2: Conceptual control system pipeline
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Component|Model Specification

Main board |NVIDIA Jetson Tegra X2 Maxwell graphics processing unit and ARM A57 pro-
cessor

Lidar RP LIDAR A2M8 360 Resolution: 0.5mm-1.5m at a maximum range: 12m

Camera ASTRA PRO Depth Distance: 0.6m-8m 1280 x 720 @30fps

Motor MD60 100W DC Speed:175rpm/67rpm / /power: 100W

Wheel Mecanum omnidirectional | Weight: 700g // Rolls number: 16

Driver DFR0601 Motor Driver Motor type: Brushed DC

Screen SPI OLED LCD Resolution: 128px x 64px

Table 1: List of the hardware components

3 Results

3.1 Implementation

The first step in developing our application is to build a neural network that will
represent the brain of the robot. Using MATLAB Deep Network Designer we were
able to create an architecture for both networks, the actor (Figure 3a) and the critic
(Figure 3b). The input data to those two networks is the same and it is distributed on
two channels and each channel will serve for a different purpose. The first channel
will use all the data needed to avoid the obstacles meaning the data received from
the LiDAR sensor available as an vector of 720 values representing the distance
in meters from the robot to the obstacle. The second channel serve for guiding the
robot to the destination point and it uses the information about the current state
of the robot (current position, current velocity, target position and distance to the
target) also available as an vector of 12 values. To help the agent develop a policy
based on minimizing the distance between the robot and the target, we chose to also
feed the data from the last 3 sample times.

Critc Network

FullyConnocted Layer

ReLu Layer

LaserScan Input Layer

ReLu Layer

States Input Layer

(a) Actor Network (b) Critic Network

Fig. 3: Agent Neural Networks
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After successfully building the network, we needed to create a simulation where
the agent could start the training. Having access to the MATLAB Reinforcement
Learning Toolbox, we created a function based environment to have maximum flex-
ibility in parametrization of training scenarios. The simulated agent is controlled by
the neural network and it can interact with the simulated environment just like the
real robot could, reading data and moving around according to the inverse kinemat-
ics of the real robot. We created more scenarios for the robot to train (Figure 4),
each scenario representing a different occupancy grid map and obstacles scattered
around.
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(a) Training scenario 1 (b) Training scenario 2

Fig. 4: Examples of training scenarios

Last step before starting the training is represented by the parametrization of the
learning algorithm. We can set all common parameters of a learning algorithm like
the learning rate, the gradient threshold, the discount factor and even the algorithm
used for training. In this application we chose the Adam (Adaptive Movement Es-
timation) algorithm using a exploration policy for the agent training with a sample
time of 0.05 seconds, the learning rate is set to 10~* and the discount factor is set to
0.99.

To accelerate the training process, we used the parallel training feature available
in MATLAB. After activating this option, the learning process will create agents up
to the NVIDIA multiprocessor count value; in our case we had 6 available proces-
sors. When using the parallel training we need to choose between the synchronous
or asynchronous training. The synchronous training will make the agents pause their
execution until all others are finished. This option is often used for a gradient-based
parallelization where the main process updates the actor and critic weights accord-
ing to the results of all agents. The asynchronous training uses the experiences sent
by each agent to update the weights and as soon as a parallel process ends its episode
it will receive a new set of updated parameters to start a new episode. We used the
asynchronous method to speed up the training process because in our application, an
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agent ends its episode if it reaches the destination or if it hits an obstacle. At first, it
is not a problem for the agents to wait for each other to finish their episode since the
chances of hitting an obstacle are higher than reaching the destination, but thinking
about the future, when the agents end up making their way to the destination more
and more often, it will be a waste if an agent hits an obstacle early and it is forced
to wait for the others to finish.

For the mathematical modelling of the desired behavior we used the branched
reward function shown in the equations 7 and 8. Each term is assigned an experi-
mentally determined weight to encourage the good behaviors like “keeping a safe
distance from the objects” and “approaching the target”. Another way to help the
agent develop a good policy is to feed a positive constant reward for reaching the
target and a negative reward for hitting the obstacles.

R, = Af,2 — 2Ar,2 +0.5min(scans) 4 0.1[dist (pos; ,target, )] -1 (7

[ 1 fordist(pos;,target;) < 0.1[m]

e = { —10 for min(scans) < 0.3[m] ®)

Once the training process begins, the environment we built will show the progress
of the agents highlighting the reward accumulated by an agent on each episode, the
average reward and the estimate of the discounted long-term reward Q0. We can
also stop the training process if something goes wrong or if the agents does not
make any progress, using this graphical interface. The training algorithm allows us
to set the flags to stop the process automatically, like the average reward or even the
episode reward exceeds some value. Another useful flag we can set is the condition
to auto-save an agent based on the average reward, or the episode count, which will
save all agents after that set value.

Table 2: Training results

Episode Ep. Reward Avg. Reward Ep. QO Elapsed Time
2500 -112.13 -2392.29 -24.32 2h

5000 -216.77 -1107.12 -33.18 4.5h

7500 304.19 -974.02 -19.12 7h

10000 417.71 -1109.16 -42.51 9.2h

To deploy the network on the real-world robot, we needed to adapt the MATLAB
environment to communicate with the ROS environment. The ROS Master needs to
have access to the raw data of the sensors, meaning the main process needs to run
directly on the robot, but the embedded system does not support the latest versions
of MATLAB and that means we need the robot to send the ROS messages with
the data from the sensors to the external station running the neural network and
send back the ROS messages containing the commands for the movement. Using
the MATLAB ROS toolbox and Robotics System Toolbox we were able to adapt
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our application for the real-world robot deployment. As long as the two stations are
in the same wireless network, the ROS Master and the MATLAB ROS package can
exchange messages without any trouble. Because our simulation was build around
the real-world robot model, we had no problem adapting the code for the ROS envi-
ronment. Instead of reading the data from the simulated environment we created the
subscribers to access this information from ROS messages and instead of using the
inverse kinematics to update the position of the agent in the simulation we created
the ROS message that will be sent directly to the robot to execute the real action.

3.2 Evaluation

As mentioned before, we used the parallel computation to run the training simula-
tions. At the end of each training session we obtain the evolution graph where we
can see how the agent started to accumulate more and more reward, meaning the
policy developed becomes more accurate and the agent behavior is approaching the
one we want. To improve our network, we saved the agents with the most prominent
result and used them as the starting point of the new training sessions.

Robot Visualization Comenzile Evolutia Erorilor de Urmarire
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Fig. 5: Validation experiments on simulator

The final results are shown in the figure 5 where we mention that the validation
scenarios are different from the training scenarios. We can see that even with no pre-
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vious experiences the agent we obtained can find a way to the destination, keeping
a safe distance from the obstacles scattered around the map.

The first position of the agent in each of the two scenarios was set to look at
the upper left corner of the map. We see that the first action of the robot was to
rotate until it would look in the direction of the target then proceed to search for the
path to reach the destination. Every time it gets too close to the obstacles the policy
developed chooses to stop in place and move around the walls until it finds a clear
path to the objective. When the robot arrives at the destination the simulation stops
and, in real-world, the robot receives a ”’stop” command.

(a) Initial state scenario 1 (b) Final state scenario 1

Comenzile Evolutia Erorilor de urmarire

Comenzile(mis, rad/s)

o 2 4

6 8
Timpul(s)

(¢) Received commands scenario 1 (d) Calculated errors scenario 1

Fig. 6: Validation experiment 1 on real-world environment

With this final agent we started testing in real-world environment and the re-
sults are shown in the figure 6 and figure 7 along with the graphs for the executed
commands and the graphs of the tracking errors. The commands are sent with a fre-
quency of 20Hz and the data is also received at 20Hz. As we can see from these two
sets of experiments, the agent is able to find a path to the destination even in the real
environment. The sudden jump in the 6d is due to the change of orientation from
180° to —179.9° when it is moving backwards.

The wheels of the real robot are subjected to friction and at the same time the
system gains inertia when it moves in relation to the simulator where the agent
moves at a constant speed. These effects can be seen in figure 6¢ and figure 7c. The
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(a) Initial state scenario 2 (b) Final state scenario 2
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Fig. 7: Validation experiment 2 on real-world environment

goal of the robot is set manually at a laptop where we run the robot visualization
program RViz included in ROS packages. It is interesting to see how the agent reacts
to the real-life scenarios, since the LiDAR sensor has an error dispersion of about
Icm. Even if the environment is no longer as accurate as on the simulator, the agent
still manages to comply with its policy, keeping a distance of about 10cm from the
nearest obstacle and looking for a way to the set target.

4 Conclusion

The article presented a reinforcement learning approach to train a fully connected
neural network for the control of an open hardware mobile robotic platform. The
implementation includes the control design, communication between the MATLAB
environment using ROS functions for integration with the robot hardware. Evalua-
tion of the results was performed in a dedicated simulation environment as well as
through implementation on the hardware robot system in a laboratory scenario.
Future work will be dedicated to comparing the DRL scheme to other classi-
cal (PID) and intelligent control methodologies such as genetic algorithms, other
nature-inspired heuristics, fuzzy logic. The potential for deploying an online training
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algorithm directly on the robotic platform using the onboard computing resources
will be explored. This will enable the robotic edge computing paradigm with or
without a online cloud support system. This should allow the continuous improve-
ment of the control performance based real-time acquisition and perception of the
changing environment.
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