
Evaluation of Compressed Residential Energy
Forecasting Models

Robert Fagaras, Cristina Nichiforov, Iulia Stamatescu and Grigore Stamatescu
Department of Automation and Industrial Informatics

University “Politehnica” of Bucharest
Bucharest, Romania

robert.fagaras@stud.acs.upb.ro, {cristina.nichiforov, iulia.stamatescu, grigore.stamatescu}@upb.ro

Abstract—Embedded energy gateways are increasingly being
implemented for monitoring and control tasks in smart energy
applications in buildings, cities, and localized electrical grids.
These leverage state-of-the-art computational intelligence models
for forecasting and anomaly detection. We present a study
comparing various neural network model implementations for
residential energy forecasting, both full-size models and com-
pressed models using weight quantization and network pruning
techniques. The evaluation is carried out on publicly available
data consisting of 23 homes from the reference Pecan Street
database. We analyse the optimal trade-off between accuracy,
in terms of MSE quantitative metrics, and model complexity as
reflected by network memory footprint for resource constrained
embedded platforms. Using a pre-determined MSE threshold
for residential energy forecasting, we achieve higher than 50%
memory footprint reduction compared to the baseline scenario,
using a combination of weight pruning and quantization, for both
individual homes and global models that are trained across time
series.

I. INTRODUCTION

Consumer-side energy management assumes robust models
of demand which are trained on long-term power measure-
ment time series and contextual information. Several types of
models can be trained such as classical system identification,
machine learning and deep learning models for short-term load
forecasting (STLF) tasks. The main characteristics of these
categories [1] are briefly summarised as follows:
• classical system identification: offers good performance

while requiring expert knowledge for selecting the best
model structure, such as ARMA, ARIMA, ARIMAX; the
methods are highly specific to the process/phenomena
being modelled;

• machine learning: it allows the incorporating of expert
domain knowledge in the feature engineering stage; pro-
vides good performance and adequate explainability e.g.
decision trees, largest margin classifiers;

• deep learning: offers state-of-the art performance with
very large number of training examples but can be opaque
in terms of explainability and require resource intensive
training; built-in stepwise feature extraction.
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The predictive performance is highly dependant on both the
quality and quantity of the training data with diverse datasets
over longer periods of observation typically yielding the best
results. State-of-the-art neural network structures exploit both
long-term temporal and spatial dependencies to extract nonlin-
earities and perform fine grained discrimination. With regard
to building energy consumption, daily, weekly and seasonal
energy patterns are learned as well as variations from such
patterns. Current challenges in electrical grid management
imply ever decreasing time scales for measurement, inference
and control in power systems. Edge inference for localized
control of energy events [2] requires learning models that can
output predictions under hard real-time constraints with low
sampling rates. These typically run on resource constrained
devices, which are closely coupled to and installed in physical
proximity of the monitored equipment or process. The ability
to achieve high quality predictions at the local level can be
also used in anomaly detection and predictive maintenance
for large scale equipment with economic and environmental
impact.

Several methodologies have become available that allow
the compression of full-scale neural network prediction and
classification models to reduce their memory and computing
footprint with bounded error metric degradation. The main
categories identified and considered in this paper are: quanti-
zation - representing the model weight and bias terms on fewer
bits in integer or binary formats and pruning - selecting the
weights and neurons that contribute least to the output quality
and discarding them. Suitable implementations as open source
libraries and tools can be leveraged in a energy forecasting
framework to select the lowest footprint algorithm that satisfies
application performance metrics.

The main contribution of the work consists of a methodol-
ogy to train, compress and evaluate energy forecasting models
using state-of-the-art approaches and open source software
instruments. This is accompanied by practical evaluation of
the trade-off between model accuracy and model complexity in
energy forecasting for dwellings. We compare a baseline fully
connected feed forward neural network (FCNN) architecture
trained on preprocessed features to various approaches for
network compression. The results can be used for embedded
deployment of the forecasting algorithms at the local level.



II. RELATED WORK

We first review several timely contributions concerning
computational intelligence models for energy forecasting. In
[3] an artificial neural network (ANN) is presented for building
energy consumption. The network uses the historical electric
load alongside weather information, calendar data and holiday
information as inputs and several experiments are carried out
for a varying number of hidden layers (1-10) and different
activation functions of the neurons (ReLU, LReLU, PReLU,
ELU, SELU). The performance is evaluated based on the
coefficient of variation of RMSE (CV-RMSE) and the mean
absolute percentage error (MAPE). The best architecture ex-
hibits a 3.4% MAPE value with six hidden layers.

A deep learning approach for energy forecasting is de-
scribed in [4] where a convolutional neural network (CNN)
is trained for short term load forecasting at the network level.
Performance is measured using MAPE. The main result is
that, using a standardized dataset, the CNN achieves below 1%
prediction error, lower than the transmission system operator
(TSO) forecasts for the specific case studies. An efficient
method for energy demand forecasting is implemented by
[5]. The authors present the usage of three machine learning
techniques: extreme gradient boosting, categorical boosting,
and random forest methods, with improved preprocessing
through missing data imputation for ensemble predictions. The
mean absolute error (MAE) and goodness of fit coefficient
(R2) are used for evaluation, while achieving an improvement
(R2 = 0.92) over off-the-shelf methods. A hybrid approach
for energy forecasting is described in [6]. The core algorithm
is based on support vector machines (SVM) with an enhanced
scheme for feature selection using on random forests. Testing
is carried out on publicly available power system data.

Recurrent neural network sequence models that exploit
long-term dependencies in the input data for building energy
forecasting are presented in [7] and [8]. These show an
improvement over the conventional ANN structures albeit with
limited control of the features and difficulty of guiding the
forecasts by incorporating domain knowldege. Classification
for dominant usage patterns based on computational intelli-
gence feature extraction has been illustrated by [9].

III. METHODOLOGY

Modern learning architectures need considerable storage
memory and computational power, which is a problem in
applications that need to run on embedded systems [10].
Therefore, it is desired to identify the parameters of the
model that have a low significance and eliminate them. Four
categories of techniques for the compression of neural net-
works are identified in [11]: weight sharing and pruning, low
rank factorization of parameter tensors, design of compact
convolutional filters, knowledge distillation.

The common feature of methods based on weight sharing
and pruning is the identification of redundant parameters and
their elimination. A specific subcategory of these methods is
quantization, which is a weight sharing strategy. This limits
the number of bits used to represent each parameter, so that

multiple groups of parameters are forced to share the same
value.

Pruning is a common method used to insert zeros into
weight tensors in a neural network. This involves applying
a specific criterion to decide which weights will be set to
zero. The problem is formalised in [12] as a combinatorial
optimization problem to find the optimal pruned weight subset
W ′ that preserves the accuracy of the pruned network with the
original set of weights W :

min
W ′
|C(D|W ′)− C(D|W )| s.t. ||W ′||0 ≤ B (1)

where C(D|W ) is the cost of the neural network trained on
the D examples with weights W and the norm ||W ′||0 bounds
the number of non-zero parameters in B.

The method can also be applied to biases, but they are
significantly less than the number of weights and their contri-
bution to the output of a neuron is generally large, so it is not
attractive to apply this method on them. Regarding pruning,
there are two possibilities for its application: weight pruning
and neuron pruning.

In the literature there are many heuristic criteria which are
computationally efficient. One of these, is pruning by magni-
tude of kernel weights i.e. minimum weight. Minimum weight
is a pruning criterion which helps eliminate the unnecessary
values by ranking their importance based on their magnitude.
The higher the value of a weight the more significant its
contribution can be in activating the neuron, thus pruning those
weights with values close to zero can have little to no impact
on the accuracy of the model. In this case of pruning which
uses the norm of a set of weights, the criterion is evaluated as
follows:

ΘMW : RCl−1×p×p → R, (2)

with
ΘMW (w) =

1

|w|
∑

w2
i , (3)

where |w| is dimensionality of the set of weights after vector-
ization and p× p is the size of the Cl−1 kernels. The relevance
of applying this type of pruning is that a convolutional kernel
with low L2− norm detects less important features than those
with a high norm [12].

Neuron pruning consists of setting entire columns in the
weight tensors to zero, therefore eliminating the contribution
of a specific neuron. However, this technique can have a higher
impact on the accuracy of the network. The reason behind
using pruning for model compression is that sparse tensors
are more compressible. By applying a simple file compression
algorithm on a pruned model the disk size required for storage
and transmission is reduced significantly.

An example of neuron pruning versus weight pruning is
showcased in Figure 1 which shows how the latter better
selectivity keeps the decrease in accuracy limited even for
higher sparsity coefficient values.

Quantization is the process of reducing the number of bits
used to represent a number. In the context of deep learning,



Fig. 1. Neuron pruning versus weight pruning

the predominant numeric format is 32-bit floating point (32FP)
[13]. However, the need to reduce the computational power re-
quired for deep learning has led researchers to use a numerical
format with lower accuracy. Therefore, it has been shown that
an 8-bit representation (INT8) can be used to represent the
weights and activations of neurons without significant loss of
accuracy. Using an even smaller numeric format, 4/2/1 bits, is
an active field of research that has also shown good progress
[14]. As a theoretical generalisation uniform quantization can
be formulated as an affine mapping between the real domain
r and the quantized domain s as follows:

r = s · (q − z) (4)

where s is the scale factor and z is the zero point. For the
domain of real values between [rmin, rmax], the linear map-
ping to the minimum and maximum integer values, represented
by [0, 2b−1] is achieved through:

r =
rmax − rmin

(2b − 1)− 0)
· (q − z) (5)

s =
rmax − rmin

(2b − 1)− 0)
(6)

with b being the b-bit integer representation of the real
number (neural network weight in our case).

Recent approaches have shown the efect of learning the
quantization thresholds for fine grained optimization improve-
ment [15]. In comparison to the pruning technique, which only
affects the model while in a compressed form, therefore useful
while transmitting the model, quantization affects the storage
memory required for the model as well as the inference time
since 8-bit operations are executed instead of 32-bits floating
point operations.

We use the Mean Squared Error (MSE) for evaluation
the network test set performance degradation with variable
sparsity.

MSE =

n∑
1

(yi − ŷi)
2

n
(7)

where yi is the test set value, ŷi is the model prediction
for that value and n is the sample size. The MSE quantifies
the sum of the squared bias and the variance in a statistical
learning model.

IV. RESULTS

For the experimental results we carry out the implementa-
tion steps illustrated in Figure 2. These are grouped into two
main stages: the pre-processing includes both feature extrac-
tiom, selection and FCNN baseline model training, while the
second stage covers the various model compression techniques
analyzed in this work for our particular use case, namely
residential energy forecasting. Based on the MSE analysis,
the memory footprint and computational requirements, the
resulting individual or aggregated models can be deployed on
the local monitoring and control device, such as a Raspberry
Pi class embedded device.
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Fig. 2. Data processing and compressed modelling pipeline for energy
forecasting

A. Input data set and preprocessing for feature extraction

We illustrate our approach on publicly available residential
energy data from the Pecan Street Dataport energy research
platform. We select the California Residential dataset which
contains rich energy data from 23 houses, sampled at 15-
minute intervals for a full year, thus yielding around 35000
data samples for each home. The variable that we use for the
modelling is the grid drawn power at each sampling interval.
An example for one home is illustrated in Figure 3.

Fig. 3. Sample input data for one residential building

https://www.pecanstreet.org/dataport/



In the preprocessing stage we leverage the tsfresh [16]
library for automated feature extraction and selection. These
include statistical indicators, Fourier and wavelet coefficients,
computed on rolling window intervals from the original time
series. The feature extraction and selection step is performed
for each of the 23 building energy traces. For our dataset the
number of selected figures ranges from 255 to 298. Figure
4 illustrates the distribution of the values across the studied
buildings.

Fig. 4. Number of selected features across the residential buildings in the
dataset

We select 164 common features across all the buildings
which are fed (input layer size = 164) to a one hidden layer,
50 neurons per layer, fully connected feed-forward neural
network (FCNN) with rectifier linear unit (ReLU) activation
functions, serving as performance baseline for the compressed
models. The features selection is carried out internally through
a statistical procedure from a list of 800+ pre-computed
features with different parameters. Selected features are ranked
by their p value, with a small value indicating the rejection
of the null hypothesis H0 and thus statistical relevance. In
our case, some representative feature categories (p = 0)
used to train the residential energy forecasting models, are
as follows: sum values, sum calculation over the time series,
fft coefficients, Fourier coefficients of the one-dimensional
discrete Fourier Transform as complex numbers with both real
and imaginary parts, change quantiles, average and absolute
value of consecutive changes of the time series inside a defined
corridor, parametrized by the quantiles ql and qh.

The goal is not to obtain the highest performing neu-
ral network model but rather to benchmark the compressed
models, with the aforementioned compression techniques to
a standardized baseline so that we can extrapolate expected
improvements for large-scale experimental deployments in the
future.

B. Evaluation of compressed models

The aforementioned model compression techniques are ap-
plied to a baseline model represented by a neural network
which was trained with the data corresponding to a single
house. The baseline model has been trained for 100 epochs ob-
taining a value of mean squared error of 0.167 on the test set.
The implementation is performed in the Python programming

https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature extraction.html

language using the TensorFlow library [17] for the full neural
network training. The compressed representations are achieved
using TFLite, which has been shown to provide efficient
computation and memory conversion for edge inference [18].
Since weight pruning has proven to have a much lower impact
on the model accuracy while obtaining the same sparsity in
the weight tensors as the neuron pruning, only the former one
has been applied.

The minimum weight criterion, described in Section III, has
been used to select the weights to be pruned. Each weight was
ranked based on its magnitude represented by the absolute
value of the weight. In order to achieve a target percentage
of sparsity, all weights below a certain threshold were set to
zero. The threshold is obtained as the highest rank times the
target sparsity in percentage. Figure 5 presents the degradation
of the considered metric with the increase in model sparsity.
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Fig. 5. MSE vs. Sparsity w/o retraining

The pruned model has the same disk size as the baseline
model because the effect of pruning is seen when compressing
the two models. Therefore a file compression algorithm is
used and Figure 6 presents the reduction in disk size of
the sparse compressed models compared to the compressed
baseline model.

However, the obtained models require significant storage
space and a GPU to run inference, which are not available on
most of the embedded devices and since the desired outcome is
to be able to run inference and store these models on embedded
devices, converting the obtained models into TFLite models
is necessary. Figure 7 presents the change in storage space
in regard to the mean squared error for the converted TFLite
models after applying the file compression algorithm.

Based on Figure 7, it can be observed that a model having
less than half the memory size of the baseline one can
be obtained with insignificant loss of accuracy. Taking into
consideration that a mean squared error value of 0.25 would
represent an acceptable error for the tackled problem, a model
with 50% sparsity, requiring 2x less memory can be used.

The chosen quantization method is the post-training quan-
tization. The weights of the baseline model have been first
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Fig. 7. TFLite pruned models MSE vs. disk size [KB]

quantized to a 16-bit floating point format,obtaining a model
which requires 3 times less storage space while preserving
the mean squared error of the baseline model. This type of
quantization is useful for models that run inference on GPU
since GPUs operate with 16-bit format, thus no additional
conversion is required.

Moving further, weights have been quantized to 8-bit pre-
cision, obtaining a 80% smaller model, yet increasing the
mean squared error. Applying the 8-bit quantization to the
activations as well has resulted in a model similar in size with
the one obtained from quantizing the weights only, but with a
greater negative impact on the model’s accuracy. The results
of the methods mentioned above has been presented in Table
I.

Since applying the 8-bit quantization only to weights has
proven to significantly reduce the model required storage space
while preserving most of the model accuracy, this method was
chosen to be further applied to the pruned models, obtaining
a model with a satisfying mean squared error while also
requiring 6x less space than the original model.

As it can be seen in Figure 8 combining the two compres-

TABLE I
QUANTIZATION RESULTS

Model Weight Activation MSE Storage[KB]
Format Format

Baseline 32 32 0.163 31.346
16-bit Quantized 16 16 0.17 10.36
8-bit Quantized 8 32 0.175 6.582
8-bit Quantized 8 8 0.79 6.303

sion methods has successfully resulted in a 50% sparse model,
requiring 85% less disk size for storage and obtaining a 0.248
mean squared error value on the test set, hence representing a
valid candidate for a model to be deployed on an embedded
device.
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Fig. 8. TFLite pruned and 8-bit quantized model MSE vs. disk size [KB]

Results for the energy prediction using the 8-bit quantized
and pruned model with 50% sparsity are show in Figure 9.
The results show the prediction for 100 data points comparing
the model’s forecast against the real measurements.
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Fig. 9. Model predictions vs. actual values

A global model with the previously mentioned structure has
been trained with the entire data set for all the 23 houses. After
100 epochs of training, the model’s mean squared error has a
value of 0.19. Taking into consideration the results obtained
on the individual model, same pruning technique and 8-bit
quantization have been applied to the global model. Figure



10 shows the degradation of the global model’s accuracy with
pruning and quantization.
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Fig. 10. Global TFLite model MSE vs. disk size[KB]

A 60% sparse global model has been selected and used
to predict 100 data points from the energy consumption. The
results are presented in Figure 11 and indicate a degradation of
the model performance from a MSE of 0.19 to 0.26. However
the robustness of the approach over residential clusters as
compared to individual models at the home level should be
considered. Table II presents the numeric values from Figure
7, Figure 8 and Figure 10. Based on these values we see
that pruning the model beyond 50-60% sparsity has a great
impact on model’s accuracy and would require re-training of
the model in order to compensate.

0 20 40 60 80 100
Time Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ac
tiv

e 
Po

w
er

 [k
W

]

MSE= 0.2603018141524669

prediction
actual

Fig. 11. Global model predictions vs. actual values

TABLE II
PRUNING RESULTS

Model
MSE

Sparsity [%]
0 25 40 50 60 75 90

Pruned 0.163 0.164 0.2 0.239 0.29 0.374 0.484
8-bit

Quant
Pruned

0.177 0.18 0.22 0.248 0.32 0.433 0.548

Quant
Pruned
Global

0.2 0.21 0.212 0.214 0.26 0.312 0.635

V. CONCLUSION

The paper presented an evaluation of several neural network
compression techniques for embedded energy management.
We show how significant model size reductions can be
achieved with limited degradation in the MSE performance
metric for the prediction task. Future work is focused on
deploying and evaluating the resulting model structures for
online inference and local control on embedded edge devices.
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[2] G. Stamatescu, R. Entezari, K. Römer, and O. Saukh, “Deep and efficient
impact models for edge characterization and control of energy events,”
in IEEE 25th Intl Conf on Parallel and Distributed Systems, 2019.

[3] J. Moon, S. Park, S. Rho, and E. Hwang, “A comparative analysis of
artificial neural network architectures for building energy consumption
forecasting,” International Journal of Distributed Sensor Networks,
vol. 15, no. 9, p. 1550147719877616, 2019.

[4] A. M. Tudose, D. O. Sidea, I. I. Picioroaga, V. A. Boicea, and C. Bulac,
“A cnn based model for short-term load forecasting: A real case study
on the romanian power system,” in 2020 55th International Universities
Power Engineering Conference (UPEC), 2020, pp. 1–6.

[5] P. Waqas Khan, Y.-C. Byun, S.-J. Lee, and N. Park, “Machine learn-
ing based hybrid system for imputation and efficient energy demand
forecasting,” Energies, vol. 13, no. 11, p. 2681, May 2020.

[6] G. Hafeez, K. S. Alimgeer, A. B. Qazi, I. Khan, M. Usman, F. A. Khan,
and Z. Wadud, “A hybrid approach for energy consumption forecasting
with a new feature engineering and optimization framework in smart
grid,” IEEE Access, vol. 8, pp. 96 210–96 226, 2020.

[7] C. Nichiforov, G. Stamatescu, I. Stamatescu, V. Calofir, I. Fagarasan,
and S. S. Iliescu, “Deep learning techniques for load forecasting in
large commercial buildings,” in 2018 22nd International Conference on
System Theory, Control and Computing (ICSTCC), 2018, pp. 492–497.

[8] C. Nichiforov, G. Stamatescu, I. Stamatescu, and I. Făgărăşan, “Eval-
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