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Abstract—Real-time cybersecurity of critical infrastructures
that include multiple networked automation systems represents
an important challenge for the assurance of modern societal
functions. In particular water supply and treatment facilities
have to operate at high availability and efficiency parameters,
with direct impact on public health in the case of performance
degradation or unscheduled down time due to network attacks.
We present a machine learning (ML)-based approach to detect
malicious activities in operational control networks of water util-
ities. The system accounts for the particularities of the industrial
communication protocols used for process control of this critical
sector and presents a comparison between enhanced random
forest models (XGBoost), hybrid neural network architectures
(CNN-MLP) and logistic regression, as reference baseline model.
Binary classification results, evaluated on the popular SWaT
dataset, show that ML methods can extend intrusion detection
system capabilities for accurate attack detection.

Index Terms—intrusion detection system, machine learning,
cybersecurity, water utilities, anomaly detection.

I. INTRODUCTION

Industrial Control Systems (ICS) comprise networks of in-
telligent automation devices tasked with the essential functions
of monitoring, controlling, and managing (cyber-)physical and
operational processes across critical industries, such as energy
production, water treatment [1], transportation, manufacturing
and the built environment [2], their primary objective being
to maintain continuous operation at appropriate parameters
and uphold the overall resilience of vital sectors. The present
generation of ICSs is undergoing accelerated modernization,
characterized by the integration of Industrial Internet of Things
(IIoT) components and mechanisms into existing architectures.
This modernization aims to improve the quality and accuracy
of sensor-generated data and to significantly increase overall
system efficiency [3]. However, the IT/OT convergence has
introduced new cybersecurity vulnerabilities into conventional
control systems, primarily due to the expanded attack surface
resulting from increased connectivity and additional access
points within heterogeneous IT/OT network environments.

The direct coupling of ICS to physical processes substan-
tially increases the potential severity of cyberattack conse-
quences, as evidenced by historical incidents. For instance,
the Stuxnet malware caused physical destruction of uranium
enrichment centrifuges in Iran [4], while BlackEnergy Ad-
vanced Persistent Threat (APT) Distributed Denial of Service

(DDoS) attacks severely disrupted power grid operations in
Ukraine beginning in 2015 [5].

Recent cyberattacks highlight that the security of ICS
is inherently connected with physical systems, particularly
in critical sectors such as power generation [6], petroleum
and petrochemical industries and water and wastewater sys-
tems(WWS). Unlike traditional cyberattacks on IT systems
that predominantly cause financial and/or data loss for orga-
nizations and individuals, security breaches exploited in ICS
can trigger catastrophic consequences with direct effects in the
physical world, including nationwide power blackouts, nuclear
plant explosions, or contamination of potable water [7].

ICSs exhibit highly consistent communication patterns char-
acterized by a repetitive sequence of a limited set of read
and write commands [8]. This regularity results in com-
mand sequences with fixed device addresses and uniform
packet lengths, a predictable pattern exploitable by machine
learning(ML) algorithms for modeling normal behavior and
identifying anomalies [9].

The main contribution of our work in this context is
argued to be the comparative implementation of three machine
learning models of different complexity and structure which
are evaluated on the Secure Water Treatment (SWaT) dataset
based on their performance in the binary classification task for
ICS network attack detection.

The scope of this study is intentionally baseline and empiri-
cal: we benchmark representative model families under a uni-
fied preprocessing pipeline on SWaT to surface deployment-
relevant trade-offs, most notably the precision-recall tension
in ICS traffic with highly regular patterns. The contribution
is therefore a clear and reproducible point of reference for
recall-aware tuning and engineering in future IDS work for
water utilities, rather than proposing a new architecture.

To clearly understand the quality of model predictions,
several metrics are considered. The F1-score combines pre-
cision and recall into a single metric and represents their
harmonic mean, effectively balancing false positives and false
negatives. The Area Under the Curve (AUC) summarizes
the Receiver Operating Characteristic (ROC) curve, illus-
trating the trade-off between sensitivity (true positive rate) and
specificity (true negative rate) across all possible classification
thresholds. A higher AUC value indicates a better-performing



model. Finally, the ROC curve itself visually compares the
rate of correctly detected attacks (true positives) against the
rate of false alarms (false positives), assisting in the informed
selection of optimal detection thresholds.

II. INDUSTRIAL CONTROL NETWORK STRUCTURE AND
IDS TAXONOMY

Most ICSs follow the Purdue Enterprise Reference Archi-
tecture (PERA) described in [10].The Purdue Model rigor-
ously partitions the ICS network into discrete, functionally
homogeneous zones, each aligned with distinct operational and
security necessities. Figure 1 presents the layout diagram for
PERA, with the key layer, the Demilitarized Zone (DMZ) that
ensures IT and OT network separation at level 3.5. The main
zones are detailed as follows.

The Enterprise Zone (IT network) consolidates conven-
tional IT assets-ranging from logistic business systems to the
corporate network infrastructure.

The Demilitarized Zone (DMZ) functions as a hardened
intermediary, precisely regulating data exchange between the
Control Zone and the Enterprise Zone, thus ensuring robust
segregation between IT and OT domains.

The Control Zone (or OT network) embodies the critical
systems and instrumentation required for real-time monitoring,
control, and maintenance of automated industrial processes,
and is methodically subdivided into four hierarchical tiers:

• Level 0 encompasses sensors and actuators that interact
directly with physical processes;

• Level 1 includes intelligent devices such as Pro-
grammable Logic Controllers (PLCs), Intelligent Elec-
tronic Devices (IEDs), and Remote Terminal Units
(RTUs);

• Level 2 integrates control systems like Human-Machine
Interfaces (HMIs), alarm systems, and control room
workstations;

• Level 3 consolidates manufacturing operations systems
that rigorously manage plant processes to achieve the
desired outputs.

Communication between Levels 2 and 3 and the Enterprise
Zone is strictly mandated to pass through the DMZ. Addi-
tionally, the Safety Zone comprises specialized devices and
systems tasked with the proactive detection of anomalies and
the prevention of hazardous failures within the ICS. Despite
the stringent requirement, prescribed by the Purdue Model,
that all traffic between OT and IT networks be funneled
through the DMZ, practical deployments often diverge from
this protocol, primarily due to integration complexities and
insufficient prioritization of security during the system devel-
opment phase. This deviation inevitably exposes the critical
OT network to heightened risks of cyber attacks. The increase
in advanced cyber threats targeting Industrial Control Systems
(ICS) has elevated their security to a critical research focus,
particularly following the discovery of Stuxnet, which marked
a turning point in cyber-physical threat awareness. Intrusion
Detection Systems (IDS) have since been acknowledged as a
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Fig. 1. Purdue Reference Model: ICS network architecture showing IT/OT
segmentation across Levels 0-5

fundamental line of defense for safeguarding ICS infrastruc-
tures. However, traditional IDS solutions, originally designed
for conventional IT environments, are not inherently equipped
to address the operational constraints, real-time requirements,
and high availability demands specific to ICS environments.
As a result, their applicability in industrial contexts remains
limited. Although research efforts toward ICS-tailored IDS
have intensified in recent years, the domain continues to lack
clear definitions, standardized methodologies, and universally
accepted evaluation benchmarks. [11]

Existing IDSs for ICSs can be classified according to
various distinguishing criteria. When categorized based on
the underlying detection methodology, IDS methodologies
are broadly divided into signature-based and anomaly-based
paradigms.

In ICS, intrusion detection spans signature-based and
anomaly-based methods and is deployed as host- or network-
based (HIDS/NIDS), depending on visibility and latency
constraints [12], [13]. Signature methods typically yield high
precision for known behaviors, whereas anomaly methods can
flag previously unseen patterns at the cost of higher false-
alarm rates [12]. In this work we focus on a network-based
IDS (NIDS) setting with supervised learning on SWaT network



logs, reflecting passive OT monitoring needs and limited host
instrumentability in industrial environments.

III. METHODOLOGY AND DATA

An important challenge in the application and evaluation
of supervised machine learning and deep learning techniques
in ICS cybersecurity is the scarcity of accurately labeled and
representative datasets. Real-world cyber-attacks targeting crit-
ical infrastructure are relatively rare, resulting in sparse data
points for malicious activities. [14] Even when operational or
testbed data are available, the process of generating reliable
ground-truth labels is resource intensive and costly, demanding
substantial time and domain expertise to analyze complex
system behaviors and differentiate true attacks from noise or
operational anomalies. [15] This combined difficulty in obtain-
ing sufficient and accurately labeled attack data forms a major
bottleneck for research, highlighting the critical importance
of realistic, publicly accessible testbed datasets. This paper
compares the intrusion detection performance achieved by
training three machine learning models on the SWaT dataset
[16]. The specific models evaluated were:

• An XGBoost classifier, configured for GPU acceleration.
• A hybrid TensorFlow/Keras implementation of a Neural

Network employing both 1D Convolutional and Dense
(MLP) layers (CNN-MLP).

• A standard Logistic Regression model - used as baseline
for reporting the improvements achieved by more com-
plex models.

The SWaT testbed architecture realistically models a mod-
ern water treatment plant, scaled down but fully operational. It
implements a sequential six-stage purification process, involv-
ing raw water intake, chemical pre-treatment, ultrafiltration,
UV dechlorination, reverse osmosis, and permeate storage.
Control and supervision rely on ICS components, including
dedicated PLCs governing each stage, HMIs for operator
interaction, and a central SCADA system connected to a
Historian for data logging. Communication is structured in
a layered network: Level 1 utilizes a star topology connecting
the SCADA system to the stage PLCs, while Level 0 consists
of ring networks linking PLCs to their respective sensors and
actuators.

The SWaT dataset was generated through a data collection
process over 11 days of continuous, 24/7 operation of the
water treatment testbed. To establish a baseline reflecting
realistic system startup and stabilization, the process started
with all tanks emptied and ran for seven consecutive days
in normal conditions without any faults or cyber-physical
attacks. Subsequently, during the final four days, the system
was subjected to a series of 36 distinct, pre-defined attack
scenarios targeting various sensors and actuators across dif-
ferent stages. Throughout the 11-day period, data was logged
at a one-second granularity. Two primary types of data were
collected: detailed physical process information recorded by a
central Historian, and network traffic data captured between
the SCADA system and the PLCs. Detailed logging of each
attack, including exact timing and targets, was essential for

Fig. 2. Secure Water Treatment testbed architecture

the accurate manual labeling used to distinguish normal from
attack states in both datasets.

The SWaT dataset provides ground truth through a Tag
column, where 0 signifies normal operation and 1 indicates an
attack period, as determined during the original data collection.
For this study, a specific subset of files was selected to
ensure representation of both conditions while managing com-
putational resources. Due to significant memory constraints
encountered when attempting to load and concatenate the
fully processed data from all available files, the final dataset
used for all model training and evaluation was constructed by
randomly sampling 7 verified attack files and 8 normal files,
selected using a fixed random seed (RANDOM_STATE = 42)
for reproducibility.

A. Data Preprocessing and Feature Engineering

Consistent preprocessing was applied to the selected SWaT
network log data to generate a unified numerical feature set
for all evaluated models. Key steps included:

• Feature Engineering: To capture temporal dynamics
in the sequence of log entries, the inter-record interval
(time_delta_sec) was computed, reflecting the time
elapsed between successive records. Recent protocol be-
havior was characterized by calculating the rolling mean
and standard deviation over a five-record window for the
service and s_port fields, enabling the model to
incorporate short-term fluctuations in network activity.

• Missing Value Imputation: Missing numerical values
were imputed with zero, while missing categorical/text
entries were filled with a placeholder string (__NaN__).

• Numerical Scaling: All base numerical features along
with the engineered time and rolling window features
were scaled to have zero mean and unit variance using
StandardScaler, which was fitted on a sample of the data.

• Categorical Encoding: All remaining non-numerical
columns (including IP addresses, protocol names, de-
vice tags, and descriptive text) were converted into



32-dimensional numerical vectors using feature hashing
(HashingVectorizer).

• Final Vector Creation: The scaled numerical features
and the multiple 32-dimensional hashed vectors were
concatenated (np.hstack) to create the final feature matrix
( 396 dimensions) used as input for the models.

This entire pipeline was executed chunk-by-chunk per input
file, saving intermediate results before final concatenation, as
required by memory constraints with the dataset size.

B. Model Training and Implementation

Following the preprocessing pipeline described in subsec-
tion A, the resulting feature-engineered datasets were prepared
for model training and evaluation.

1) XGBoost Model: An XGBoost classifier, implemented
via the xgboost Python library (xgb.XGBClassifier),
was employed as the first modeling approach. This model
operates by constructing an ensemble of decision trees (fk) ad-
ditively, leveraging gradient boosting principles. Key configu-
rations included setting the objective to binary:logistic
for this classification task and enabling GPU acceleration
using device=’cuda’ and tree_method=’hist’. The
model’s prediction probability for a given sample x results
from applying the sigmoid function (σ) to the sum of outputs
from all K trees:

ŷp = P (y = 1 | x) = σ

(
K∑

k=1

fk(x)

)
(1)

where the sigmoid function σ(z), which converts any real-
valued input z into a value between 0 and 1, is defined as:

σ(z) =
1

1 + e−z
(2)

Trees are added sequentially to minimize a regular-
ized objective function based on the logistic loss gradi-
ent. Training was performed using the .fit() method
on the prepared training data (Xtrain, ytrain), utilizing the
test set (Xtest, ytest) as the evaluation set for early stopping
(early_stopping_rounds=50) based on the AUC met-
ric (eval_metric=’auc’).

2) Keras Hybrid CNN-MLP Model: The second model
evaluated was a hybrid architecture, also implemented in
tensorflow.keras, combining an initial 1D CNN stage
for feature extraction with a subsequent deeper Multi-Layer
Perceptron (MLP) head for classification.

Input features were reshaped and passed through two
Conv1D blocks. The first block used 64 filters with a kernel
size of 3 and ReLU activation, followed by a MaxPooling1D
layer with pool size 2 and a Dropout layer with a rate of 0.25.
The second block applied 32 filters with the same kernel size
and activation function, followed again by MaxPooling1D
(pool size = 2) and Dropout (0.25). After flattening the re-
sulting convolutional feature maps, the MLP section consisted
of two Dense layers of 64 and 32 neurons respectively, each
employing ReLU activation, interspersed with a substantial

Dropout of 0.5 before the final output neuron with sigmoid
activation for binary prediction.

Formally, the convolutional and dense layers of the model
were defined by the general equation:

h = activation(Wx+ b) (3)

This equation represents a generic dense (fully connected)
neural network layer, where W is the weight matrix, x is
the input vector, b is the bias vector, and h is the output
after applying an activation function. Specifically, activation
functions employed are:

• ReLU activation defined as:

ReLU(z) = max(0, z) (4)

• Sigmoid activation used in the final prediction layer:

σ(z) =
1

1 + e−z
(5)

The model minimizes the binary cross-entropy loss function
given by:

L(y, ŷp) = − [y log(ŷp) + (1− y) log(1− ŷp)] (6)

This binary cross-entropy loss L measures the difference
between true labels y (0 or 1) and predicted probabilities ŷp.

The choice of activation functions was guided by their
suitability for different roles within neural network architec-
tures. The ReLU activation function was selected due to its
computational efficiency, robustness against vanishing gradi-
ents, and its ability to introduce non-linearity effectively, thus
facilitating deeper networks and enhancing feature extraction
in convolutional and dense hidden layers. For the final classifi-
cation layer, the sigmoid activation function was chosen for its
inherent suitability in binary classification, as it transforms raw
output logits into probabilistic predictions bounded between 0
and 1. This combination ensures efficient convergence during
training and yields accurate and interpretable outputs aligned
with the objective of distinguishing between normal and attack
instances in ICS network traffic.

The hybrid CNN-MLP was compiled with the Adam
optimizer and trained using identical procedures (.fit()
method, early stopping based on val_auc) to allow direct
comparison based on architectural differences.

3) Logistic Regression Model: In addition to
the tree-based and neural-based approaches, a
standard Logistic Regression (LR) model was
implemented using the scikit-learn library
(sklearn.linear_model.LogisticRegression).
This model predicts the probability of an attack by applying
a sigmoid transformation to a linear combination of the
engineered features x:

ŷp = P (y = 1 | x) = σ
(
wTx+ b

)
(7)

where w is the learned weight vector, b the bias term, and
the sigmoid function σ(z) is defined as:



σ(z) =
1

1 + e−z
. (8)

ŷp = σ(z) =
1

1 + e−z
. (9)

Training proceeds by maximizing the likelihood (or equiv-
alently minimizing the binary cross-entropy loss)

L(y, ŷp) = −
[
y log(ŷp) + (1− y) log(1− ŷp)

]
, (10)

subject to a regularization penalty to control model com-
plexity and prevent overfitting.

IV. RESULTS

Table I compares the performance of Logistic Regression,
XGBoost, and the Hybrid CNN-MLP models. The results
demonstrate that both the XGBoost and Hybrid CNN-MLP
models considerably outperform Logistic Regression across
all measured metrics. Logistic Regression achieves a relatively
low ROC AUC of 0.7560 and accuracy of 0.6945, highlighting
its inadequacy for effective detection in the SWaT dataset.
XGBoost achieves a significantly higher ROC AUC (0.8840)
and accuracy (0.7817), with excellent precision (0.9540),
though it has lower recall (0.4735). The Hybrid CNN-MLP
model provides similar results, with a ROC AUC of 0.8748
and accuracy of 0.7765, also exhibiting high precision (0.9418)
but limited recall (0.4665).

TABLE I
TEST-SET PERFORMANCE COMPARISON

Model Acc. AUC Pre. Rec. F1 Spec. FPR

XGBoost 0.782 0.8840 0.954 0.474 0.634 0.985 0.015
Hybrid CNN-MLP 0.776 0.8748 0.942 0.467 0.624 0.981 0.019
Logistic Regression 0.695 0.7560 0.705 0.398 0.510 0.812 0.188

While both the XGBoost and CNN-MLP models achieve
high precision and low false-positive rates, their performance
is constrained by relatively low recall values (0.47 and 0.46,
respectively), indicating a significant number of undetected
attack instances (false negatives). This outcome represents a
critical limitation in the context of intrusion detection for
ICS environments, where undetected attacks may pose severe
operational risks and threats to public safety. The lower recall
indicates the models’ difficulty in detecting subtle attack
patterns that closely resemble normal operational behavior,
particularly given the high similarity and repetitive nature of
ICS network traffic patterns. This implies that the learned
feature representations may be insufficiently sensitive to cer-
tain types of anomalies present in the dataset. To address
the recall deficit within the present framework, a direct next
step is to adopt cost-sensitive objectives that penalize missed
attacks more than false alarms. Concretely, we would upweight
attack class errors during training, encouraging the learner to
prioritize sensitivity to minority patterns. This modification
preserves the models and features reported here but shifts the

decision boundary toward higher recall; we leave its empirical
evaluation to future work.

These observations are further validated by the confusion
matrix counts shown in Table II. Logistic Regression exhibits
substantial misclassification with high false-negative (352,735)
and considerable false-positive counts (183,662). XGBoost
and the Hybrid CNN-MLP significantly reduce false-positive
counts to 13,381 and 21,139, respectively, but they still show
a notable number of false negatives (308,843 and 391,201
respectively), indicating difficulties in identifying all attack
instances. Figure 2 illustrated the relative confusion matrix
values for the neural network model.

To mitigate this limitation, future research should explore
advanced training strategies, such as cost-sensitive learning
methods designed to explicitly penalize false negatives more
heavily, thus emphasizing the detection of attacks. Further-
more, adaptive or dynamic threshold tuning approaches could
be employed, systematically balancing the precision-recall
trade-off to achieve better recall without substantially increas-
ing false alarms.

TABLE II
CONFUSION MATRIX COUNTS

Model TP FN TN FP

XGBoost 277749 308843 876085 13381
Hybrid CNN-MLP 342038 391201 1090694 21139
Logistic Regression 233443 353149 792506 183662

Fig. 3. Confusion Matrix with Relative Values for the Neural Network-based
Model

Figure 4 and Figure 5 visually illustrate these distinctions
through the Precision-Recall (PR) and Receiver Operating
curves. The curves for XGBoost and the Hybrid CNN-MLP
are closely overlapping, reflecting very similar performance
characterized by high precision across low-to-medium recall
thresholds. This suggests these models excel at minimizing
false alarms but struggle to maintain recall as classification
thresholds are relaxed. In contrast, Logistic Regression con-
sistently shows lower precision at nearly every recall level,



underscoring its limitations in reliably identifying attacks
without generating excessive false positives.

Practically, XGBoost emerges as a slightly superior option
given its marginally higher ROC AUC, accuracy, and preci-
sion, beneficial when false-positive reduction is prioritized.
However, both XGBoost and Hybrid CNN-MLP models must
be improved in terms of recall to effectively reduce missed
detections. Logistic Regression, given its significantly poorer
performance, remains unsuitable for practical deployment in
critical ICS security contexts.

Fig. 4. Precision-Recall Curve Comparison of Logistic Regression, XGBoost,
and Hybrid CNN-MLP Models

Fig. 5. Receiver Operating Characteristic (ROC) Curve for the XGBoost
Model

V. CONCLUSION

We presented an approach to classify attack patterns in
wastewater utility plants by combining industrial network logs
with machine learning models. Despite promising precision
and low false-positive rates, the relatively low recall highlights
the need for enhanced detection sensitivity. The approach
shows promise for online anomaly detection of connected
automation systems. Ongoing work is focused on extensive
evaluation of the proposed models under explainable AI and
feature pre-processing requirements.
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