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Abstract—Real time localisation and classification of Unex-
ploded Ordnance (UXO) can significantly benefit from advanced
new model compression and quantization techniques towards
embedded deployment on resource constrained fixed or mobile
hardware platforms. This can extend the applicability, use-
fulness and adoption by first responders of such methods in
real-world scenarios with significant social and environmental
benefits. The proposed methodology considers the emergence of
multiple frameworks and tools that have now become available
to automate the comparative assessment of state-of-the-art image
classification edge AI model. As main results, we present a quanti-
tative evaluation of the robustness-runtime efficiency trade-off for
representative CNN-based vision model and a parametrization
discussion on a reference public UXO dataset. The approach is
validated through deployment and experiments using a reference
embedded GPU development board i.e. the Nvidia Xavier NX.

Index Terms—image processing, neural networks, edge com-
puting, uxo, optimization.

I. INTRODUCTION

The 2003 Protocol on Explosive Remnants of War [1], as
part of the Geneva Conventions, defines Unexploded Ordnance
(UXO) as ”... explosive ordnance that has been primed, fused,
armed, or otherwise prepared for use and used in an armed
conflict. It may have been fired, dropped, launched or projected
and should have exploded but failed to do so.”. UXO pose
significant risks to personal health and safety and states have
the post-conflict obligation to assure the recording, storage
and release of information regarding UXO. New intelligent
systems can thus support cost-effective and large scale UXO
detection, localisation and classification, with wide reaching
humanitarian impact across the globe.

The localisation and classification of unexploded ordnance
(UXO), such as mortar bombs, grenades, and projectiles
from past armed conflicts, has become a topic of significant
interdisciplinary interest within the scientific community, for
the immediate advantage of finding suitable methods: saving
human lifes. This subject presents a series of challenges arising
from the complexity of the scene, the diverse nature of the
munitions, and the limited mobility of intelligent systems.
The complexity of the scene and munitions is reflected in the

variety and conditions in which these munitions can be found:
oxidized, incomplete, or improvised. Our recent research [2]
has demonstrated that a granular, multi-model approach in-
tegrated within a two-step deep learning methodology can
address these challenges by handling exceptions and solving
identified problems. In terms of mobility limitations, to define
the necessity of portable hardware platform, it is important
to note that UXOs are often located in hard-to-access areas.
In the current study, we further refine this methodology by
deploying intelligent systems on an ultra-portable AArch64
device, which includes CUDA compatibility for rapid parallel
computation making an additional iteration in our study by
eliminating the need for a server to perform inference for
complex models. Models and the software framework were
chosen in direct connection to the State-of-the-Art (SoA),
while hyperparameter tuning was carried out specifically for
this dataset and task. The proposed goal is supported through
the use of a complete and representative dataset developed in
collaboration with field experts [3].

The objectives of the current study include the testing
of modern arhitectures on the updated open UXO dataset,
applying post-quantization and other advanced techniques for
optimizing models in edge-deployment e.g. through the exper-
imental hardware evaluation on Jetson Xavier NX embedded
development modules. The aim of the scientific work is to pro-
vide new capabilities and perspectives for UXO detection and
identification, complementing and enhancing existing research
dedicated to mitigation of risks associated with unexploded
ordnances.

The key contributions of this study for novel AI-based
embedded UXO localisation and classification are considered
to be as follows:

• Fine-tuning of the RetinaNet with FocalLoss edge artifi-
cial intelligence model with multiple hyperparameters on
a recent open specialised dataset for UXO localisation
and classification (CTX-UXO);

• Testing, optimization and post-quantization of the trained
models on multiple GPU capabilities: A100, T4,
RTX4090 and NVidia Jetson device;



• Quantitative performance metric evaluation and bench-
marking enabling replicable analysis and implementation
of the proposed training and inference pipeline.

Referring to the structure of the paper, Section II reviews
the specialized literature on inference using embedded systems
with models trained or fine-tuned for detecting munitions or
similar objects, limitations and approaches, as well as the
characteristics of the embedded system utilized and selection
of the frameworks involved. Based on these insights, Section
III introduces the proposed model to be used, optimization
methods and used frameworks, all included in a well defined
and reproductible methodology. Following the methodology
outlined in Section III, in Section IV the training and validation
losses are presented, thereby discussing the diversity of the
dataset and the significance of the utilized model. Two cat-
egories of performance metrics are considered and evaluated
for this purpose: primary metrics (Mean Average Precision,
Recall, F1-Score) and secondary metrics in terms of memory
load and inference time (as how many frames per second
can be processed) to identify the tradeoffs between robust-
ness and runtime efficiency, getting in the scene optimization
techniques, testing and deployment on edge devices.

II. RELATED WORK

In previous work [2], we developed a robust system for
detecting and identifying unexploded ordnance using a two-
step deep learning methodology. The approach integrated
domain-specific knowledge with advanced image processing
techniques to address the challenges associated with UXO
detection. Specifically, we proposed a pipeline with multi-
ple models, leveraging the YOLOv8X architecture, the most
performant and the largest, in terms of parameters and lay-
ers, model from the v8-series. This approach demonstrated
promising results, the bottleneck of that moment being the en-
vinroment constrained computational resources. Starting from
this bottleneck, we adress the issues by proposing the use of
an embedded system designed for AI inference in the form
of the Nvidia Jetson Xavier NX family of embedded GPU
development boards.

The Nvidia Jetson Xavier NX is equipped with a 6-core
Carmel ARM v8.2 64-bit CPU operating at up to 2.2 GHz,
and a 384-core Volta GPU featuring 48 Tensor Cores. It also
includes 8GB of LPDDR4x memory and supports up to 21
TOPS (Tera Operations Per Second) of AI performance. The
portable platform enables real-time execution of optimized
deep learning models, making it suitable for applications in
resource-constrained environments such as field deployments
for UXO detection. Its compact size and the power consump-
tion (5w-15w, critical 15-20W) further enhance its viability
for on-site processing.

Regarding the model selection stage, the focus has been
on finding a model able to handle hard negative examples
[4] while keeping a good balance on primary metrics. Based
on several research results published in [5], RetinaNet is
a widely used object detection model due to its balanced
architecture that delivers both accuracy and computational

efficiency. Additionally, RetinaNet has demonstrated very
good optimization capabilities and implementation for real-
time solutions, such as face detection. RetinaNet employs
Focal Loss [6], which addresses class imbalance by down-
weighting negatives sampling and focusing more on hard-to-
classify examples. On the dedicated embedded Nvidia Jetson
platforms, this ensures robust performance without requiring
excessively complex models.

In related work based on perfomance comparison on the
edges, the authors of [7] conducted a detailed performance
evaluation of several machine learning frameworks, including
TensorFlow, Caffe2, PyTorch, MXNet, and TensorFlow Lite,
across various edge devices. Notably, their experiments used
CNNs as benchmark models to evaluate latency, memory foot-
print, and energy consumption on platforms such as the Nvidia
Jetson devices. PyTorch demonstrated superior inference time
on the Jetson devices, achieving an average inference latency
of 1.35 seconds for 100 runs. In contrast, TensorFlow exhibited
higher latency, emphasizing the need for optimization when
using this framework. On smaller models like SqueezeNet,
Caffe2 and MXNet outperformed other frameworks, with an
inference latency of only 0.375 seconds per run, showcasing
its efficiency in handling lightweight architectures. The Jetson
device showed a wide range of memory utilization across
frameworks. TensorFlow consumed up to 3000MB, while
PyTorch utilized only 1301MB for the same model, indicating
a significant variation in resource demands that must be
considered during deployment. Caffe2 demonstrated the lowest
memory usage for low-size models. Energy consumption rep-
resents another relevant aspect for our study, because the edge
device with the results from the next section can be leveraged
by deploying the resulting models on mobile platforms such
as UAV systems or explosive ordnance disposal (EOD) robots
that can access hard-to-reach old warzones in difficult terrain
conditions. Correlated strongly with latency, PyTorch and
MXNet are showing the best energy efficiency. The study
highlighted that model loading often consumed more energy
than inference, suggesting optimization opportunities in pre-
processing and loading stages.

From these findings, we draw several actionable strategies
for our study:

• PyTorch represents the most reliable framework in the
specific case to be used for training/fine-tuning and later
for the inference on Jetson devices;

• Pytorch, as the other frameworks, lacks in pre-processing
stage and, depending on model and hardware arhitecture,
in inference time. For adressing this issue, this paper
will introduce optimization techniques by leveraging Ten-
sorRT framework.

Regarding TensorRT, it is a high-performance deep learn-
ing inference optimizer and runtime library developed by
NVIDIA, suitable for Jetson Devices [8], with real-time ca-
pabilities [9]. It works by performing several optimizations
[8], such as combining multiple neural network layers into
one to reduce computation overhead, precision calibration
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Fig. 1. The implementation of UXO detection models optimized for Jetson devices provides new capabilities for the safe operation of unmanned systems

(from FP32 to FP16 or Int8 if supported), selecting the most
efficient kernels for that specific target hardware, optimizing
memory usage, all in a high-level implementation. The advan-
tages of TensorRT include reduced inference latency, higher
throughput, and lower memory consumption. [10] However,
the optimizations, especially the floating point precision cal-
ibration, can affect primary metrics, such as mean average
precision, particularly when using lower precision like FP16.
Nevertheless, careful calibration and tuning can mitigate these
effects, ensuring that the models perform optimally in both
remote server and edge environments.

The past approaches in UXO detection, stemming from
[11], [12] and [13], were focused particularly on algorithms
and finding suitable datasets, with limited real word imple-
mentation aspects and constraints. [11] developed a detection
pipeline leveraging advanced computer vision techniques. The
core methodology involved using Convolutional Neural Net-
works (CNNs) to detect specific cluster submunitions within
aerial imagery. Their approach emphasized high detection
accuracy, achieved by training the models on a dataset with
augmentation techniques to account for various environmental
and lighting conditions. The results indicated an accuracy
of over 95%, showcasing the potential of CNNs in UXO
detection. Still, the dataset contains similarities by including
just one type of submunitions. The main purpose in our
paper is to identify multiple classes, despite the type and
manufacturer, instead of a specific subclass. Also, the reliance
on high computational resources for processing large imagery
datasets highlighted a critical limitation for deployment in
resource-constrained environments such as edge devices.

It can be highlighted that UAVs [12] are a viable option,
the immediate advantage of unmaned systems being that
there is no risk for the EOD operator. Still, the approach
of the researchers [12] is not real-time, inference and image
processing take place later on a GPU server. The advantage

of the Jetson device’s portability is that it can be deployed on
any type of unmanned device, as shown in Figure 1, so the
results of the current study can be leveraged.

The increasing adoption of edge machine learning models
for UXO detection necessitates a careful examination of the
trade-offs between robustness and runtime efficiency. While
high-performance models such as very deep Convolutional
Neural Networks/Vision Transformers achieve superior detec-
tion precision, they often demand substantial computational
power and memory, posing challenges for real-time and on-
device processing. Conversely, lightweight models optimized
for edge deployment may sacrifice accuracy/precision for
efficiency and capabilities of implementation, requiring strate-
gies such as model quantization, pruning, and knowledge
distillation to mitigate performance losses. The high accu-
racy achieved by CNNs and multispectral imaging systems
highlights the importance of robust model training and data
preprocessing. In the same, the limitations associated with
computational demands emphasize the need for optimizing
models for edge deployment. This balance is central to our
investigation, guiding the design and evaluation of edge neural
networks models able of reliable UXO detection in resource-
constrained environment. Based on these aspects, the Results
Section includes an analysis from both primary and secondary
metric perspectives to determine how model performance is
influenced by the optimization techniques used, ensuring a
balanced trade-off between robustness and runtime efficiency,
with capabilities of real-time implementation.

A very important aspect to highlight is that by implementing
high-performance models on Jetson devices, a new path toward
portability is opened through the possibility of scaling the
developed modules in UAV systems, EOD robots, and other
hardware systems. This provides a safety lever for rescuers, as
they no longer need to get too close to UXOs for identification.
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Fig. 2. Overlapping boundary boxes (marked as ”1”) and the number of negative samples (marked as ”2”) can pose a challenge in UXO detection.

III. METHODOLOGY

In addressing the issues raised, and by correlating with
the state of the art, the present study will perform fine-
tuning on the RetinaNet image classification model. RetinaNet
stands out as a highly suitable architecture for the task of
unexploded ordnance (UXO) detection, owing to its ability to
combine high precision with computational efficiency (one-
stage detection arhitecture) while addressing the challenges
presented by unexploded ordnance detection. The detection of
UXOs involves handling datasets that are often imbalanced,
where the majority of the data represents background clutter,
as it is exemplified in Figure 2, and only a small fraction
corresponds to actual ordnance. In Figure 3 an image from
the CTX-UXO dataset is illustrated where more UXOs are
overlapping, so the risk is that even the bounding boxes
used for labeling overlap, which means another instance can
effectively be introduced as noise. Additionally, these datasets
include objects of varying sizes and shapes, adding further
complexity to the detection process. RetinaNet is specifically
designed to address these challenges effectively, while keeping
a low memory load and good inference speed, this being the
reason why is suitable in our edge-deployment research.

Fig. 3. Dense Instances Image Sample from CTX-UXO Dataset

At the core of RetinaNet’s suitability for UXO detection is
its use of focal loss [14], a loss function designed to mitigate
the effects of class imbalance and dense object detection, as an
updated version of CrossEntropy Loss, while keeping a good
inference speed and memory load:

FL(y, ŷ) = −
C∑
i=1

αi(1− ŷi)
γyi log(ŷi) (1)

where:
• C is the total number of classes;
• yi ∈ {0, 1} is the ground truth label for class i;
• ŷi is the predicted probability for class i;
• (1− ŷi)

γ is the modulating factor, with γ ≥ 0 controlling
the focus on hard-to-classify examples. In the current
work, γ is 2;

• αi is a weighting factor to address class imbalance for
class i.

The used loss for boundary boxes regression is the following:

Lbbox(t, t
∗) =

∑
i∈{x,y,w,h}

smoothL1
(ti − t∗i ) (2)

smooth L1 being:

smoothL1
(x) =

{
0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(3)

where:
• t = (tx, ty, tw, th) are the predicted bounding box;
• t∗ = (t∗x, t

∗
y, t

∗
w, t

∗
h) are the ground truth bounding box;

In UXO datasets, the overwhelming number of background
samples (negative samples) can lead traditional detection mod-
els to focus more on these easy examples, at the expense
of missing the rarer and more critical ordnance examples.
Focal loss dynamically reduces the impact of well-classified
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Fig. 4. Methodology to measure the perfomances for edge deployment for UXO Detection on Jetson Xavier NX

examples, ensuring that the model concentrates on harder-to-
classify UXOs. This makes RetinaNet particularly adept at
identifying rare and difficult-to-detect UXOs, even when they
are small or partially obscured, as shown in Figure 3.

Another significant advantage of RetinaNet is its one-
stage detection design [5], which streamlines the process by
integrating object classification and bounding box regression
into a single step. This design not only reduces inference time
compared to two-stage detectors like Faster R-CNN but also
ensures a better trade-off between speed and accuracy.

For UXO detection, especially in edge-computing environ-
ments where real-time processing is crucial, this efficiency
is very important, being the opportunity to scale the results
into a bigger project - like UAVs integration. UXOs are often
located in visually complex and noisy backgrounds, such
as fields, forests. RetinaNet’s multi-scale feature extraction
ensures it can differentiate UXOs from the surrounding noise,
maintaining reliable performance under challenging conditions
[14]. To evaluate these architectures, they will be deployed and
run in the cloud on A100 GPU, RTX 4090 GPU, T4 GPU as
well as on Nvidia Jetson device.

The used dataset is CTX-UXO: A Comprehensive Dataset
for Detection and Identification of UneXploded Ordnances [3],
meticulously curated to include real munitions and replicas in
diverse orientations and physical conditions, on different sea-
sons, ensuring robustness and applicability across a wide range
of scenarios. It includes 3 classes (mortar bomb, grenade, pro-
jectiles), 12 543 positive instances with an input size for fine-
tuning, validation and testing of 800 px x 800 px. Considering
that some images may contain more instances than others,
stratified sampling is necessary. Stratified sampling [15] is a
technique used to ensure that each class is proportionally rep-
resented in the sampled subsets, preserving the original class
distribution of the dataset. This method increase prediction
accuracy as it was demonstrated by the scientific community.
PyTorch represents the main framework used for training,
validation and testing, while TensorRT will be used for edge-
optimization techniques and testing on Nvidia Jetson device.
To optimize the Unexploded Ordnance (UXO) detection model
on the Jetson Xavier NX platform, the methodology from
Figure 4 was implemented. The pre-trained models were fine-
tuned using a custom UXO dataset and then exported to the
Open Neural Network Exchange (ONNX) format to ensure
compatibility with TensorRT. The ONNX model was further

optimized using TensorRT, employing Half-precision floating-
point (FP16). For comparison, PyTorch float32 initial model
will be tested too on Nvidia Jetson. TensorRT automatically
fused model layers and selected the most efficient CUDA
kernels for the Jetson Xavier NX hardware. This process
enhanced the utilization of GPU resources and reduced latency.

IV. RESULTS

The fine-tuning was done using PyTorch on Nvidia A100
GPU, batch size 32, with an input size of 800 x 800,
Ampere Arhitecture, 40GB VRam, base RetinaNet model.
For consistency, the dataset split is stratified [15] per classes:
70% training data, 20% validation data, 10% testing data. No
augmentations were used for training data, the dataset being
contextual representative.

The loss results are composed from the sum of two losses:
classification loss and regression loss (boundary boxes). For
the purpose of visualizing and understanding the model capa-
bilities. Figure 5 displays the plotted loss values for classifi-
cation and separately for boundary box regression - train.

Fig. 5. Train losses for classification and regression - boundary boxes.

In Figure 6, the loss for train and validation is presented.
For ensuring the training efficiency and robustness vali-

dation, by searching for the convergence without overfitting
on the training data, we employed a dynamic learning rate
scheduler, Reduce Learning Rate on Plateau. This scheduler



Fig. 6. Train and validation converged losses

adaptively lowers the learning rate when the monitored perfor-
mance metric (being the validation loss value) stagnates over
successive training epochs. The coefficient γ for Focal Loss
was set to 2 after multiple successive fine-tuning iterations.

Regarding the primary metrics, Mean Average Precision,
calculated at an Intersection over Union (IoU) threshold of
0.50 (mAP50) and as average at varying IoU between 0.50
and 0.95 (mAP50-95), Recall and F1-Score will be utilized.
For secondary metrics, the average of the memory load and
Frames per Second (FPS) rate will be used. All metrics in
Table 1 are calculated on the Cloud platform (A100, RTX
4090, T4) and on Jetson Xavier NX.

TABLE I
PERFORMANCE OF RESULTED MODELS. RECALL AND F1-SCORED ARE

CALCULATED FOR A STRICT IOU 50-95. F1-SCORE IS CALCULATED
BASED ON MAP50-95 AND RECALL

Device Framework mAP50-95 mAP50 Recall F1
Cloud PyTorch 60.2 % 76.3% 73% 65.9%
Jetson PyTorch 60.2% 76.3% 73% 65.9%
Jetson TensorRT FP32 59.8% 76% 72.5% 66.93%
Jetson TensorRT FP16 58.2% 75.2% 71.7% 65.16%

In Table 2, the secondary metrics are centralized, cor-
responding to each tested hardware configuration and used
software framework.

TABLE II
PERFORMANCE OF FINE-TUNED MODELS IN TERMS OF MEMORY LOAD

AND FRAMES PER SECOND.

Device Framework Memory Load FPS
A100 PyTorch 0.3GB (0.75%) 38

RTX 4090 PyTorch 0.3GB (1.25%) 48
T4 PyTorch 0.3GB (1.87%) 13

Jetson PyTorch 0.3GB (3.75%) 2
Jetson TensorRT FP32 0.28GB (3.5%) 15
Jetson TensorRT FP16 0.14GB (1.75%) 28

V. CONCLUSIONS

In this paper, we examined and demonstrated how a model
can be selected and fine-tuned to have unexploded ordnance
localisation and classification capabilities and how it can
be refined to achieve robust results on edge devices. By
employing a well-defined methodology, a contextual dataset
and modern frameworks such as PyTorch and TensorRT, we
achieved real-time performance on Nvidia Jetson devices, with
a recall of 71.7% for UXO detection and up to 28 frames per
second for the TensorRT FP16 model. The results are very
promising and can be easily scaled by integrating them into
existing portable hardware systems, such as unmanned aerial
vehicles (UAVs) and Explosive Ordnance Disposal (EOD)
robots, thereby reducing to zero the risks associated with the
localisation and classification of munitions. As future steps, we
aim to increase the number of classes in the dataset, studying
ensemble learning on models with reduced parameters, while
implementation capability on edge devices remains viable.
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