
Sustainable Manufacturing Application of
Embedded Learning Algorithms for Vision-based
Defect Detection under the Industry 5.0 Paradigm

Mihai-Daniel Pavel
Automation and Industrial Informatics

University Politehnica of Bucharest
Bucharest, Romania

mihai daniel.pavel@upb.ro

Grigore Stamatescu
Automation and Industrial Informatics

University Politehnica of Bucharest
Bucharest, Romania

grigore.stamatescu@upb.ro

Abstract—The improvement of flexible manufacturing sys-
tems towards sustainable use of raw materials and increased
resource efficiency represents a core tenant of Industry 5.0
competitiveness. This can be currently achieved through the
adoption and accelerated implementation of state-of-the-art ar-
tificial intelligence models in forecasting, anomaly detection and
classification applications. Human-centric approaches balance the
deployment and implementation models for control and cognition
with socially relevant goals for increased resilience. The paper
presents and embedded learning application for vision-based
defect detection on a five-station connected laboratory flexible
manufacturing line. Quantitative results are illustrated and
discussed that comparatively benchmark multiple generations
of the YOLO real-time object detection model family along
with implementation considerations and integration aspects with
industrial automation technology.

Index Terms—sustainable manufacturing, embedded learning,
ai, defect classification, industry 5.0.

I. INTRODUCTION

The concept of connected Industry 4.0 has been extended
to include three pillars of sustainability, human centricity
and resilience under the Industry 5.0 paradigm [1]. Focusing
on sustainability, the development of intelligent systems in
manufacturing can bring a significant contribution to reduce
raw material and process energy waste by early detection
and classification of product defects. Vision-based inspection
solutions leverage advanced AI models for identifying, classi-
fying and labeling defect product parts in real time. The main
requirements for a successful implementation of such models
imply a suitable understanding of the manufacturing process
and domain-specific adaptation of the AI models for robust
performance under closed-loop control constraints.

In this context we introduce our work that considers the
application of various YOLO-family models and benchmark-
ing their performance on three different hardware platform
for a flexible assembly line experimental system. Unlike prior
work that requires extensive dataset collection and model
retraining for industrial applications, this study demonstrates
the feasibility of using pre-trained YOLO models to achieve
robust defect detection in a five-station manufacturing line,

minimizing setup time and data requirements. The system
illustrated in Figure 1 represents a five-stage process that
includes the following operations: base plate supply, bottom
piece assembly, collaborative robot handling and visual inspec-
tion station, top part assembly and storage station.

Fig. 1: Advanced flexible assembly line architecture [2]

The main contributions of this paper are argued to be as
follows:

• Benchmarking various YOLO-family object detection
models on multiple hardware platforms in a manufac-
turing context;

• Integration and deployment of the solution with industry-
grade components and systems.

The rest of the paper is structured as follows. Section II
frames our work into the scientific context of embedded in-
dustrial AI applications. Section III describes the methodology
used for the experimental research, including the performance
metrics for benchmarking and collected image datasets. Sec-
tion IV extensively presents the achieved results on three
hardware platforms with multiple generations of the YOLO
deep learning models for object detection and classification.



Section V concludes the paper with outlook on deployment of
the current solution.

II. RELATED WORK

Both industrial revolutions that started the concepts of
Industry 4.0 and Industry 5.0 were deeply documented in [3]
and [4]. [5] developed a deep Convolutional Neural Network
(CNN) for defect detection for a reliable industrial inspection
system. Another research in this field is [6] where a deep
learning model was presented for surface anomaly detec-
tion using mixed supervision. The advanced architectures of
YOLO are available as open-source software [7] for further
development and new research in this field. In his work
[8] researched a variant that uses programmable gradient
information (PGI) to resolve the data loss of other state-of-
the-art models. Advanced models like Segment Anything [9]
for image segmentation applications can work seamlessly with
object detection algorithms as it helps with initial preparation
of data sets. The main objective of developing a new model is
the ability to work as fast as possible without losing accuracy.
[10] presented in his work a model that is 50 times faster than
its predecessor, with even better accuracy. Other models focus
on open-vocabulary detection, [11], exploring prompt-then-
detect paradigms. This high volume of models and methods
brings about the need to explore the differences between
them, which are the strengths and weaknesses of one model
compared to another. An example of a paper exploring this
aspect is [12] which provides an overview of the most relevant
evaluation methods used in object detection competitions.
Previous work [13] demonstrated the effectiveness of one
such approach in conjunction with reference performance
metrics validated through experiments on a real-world flexible
assembly system with state-of-the-art components and tools.
In [14] an application of reinforcement learning with vision-
based object detection for mobile robot control is presented.

III. METHODOLOGY

The application developed for the flexible assembly line
system is divided into several parts: raw material monitoring
and identification in local warehouses to inform the user of the
production capacity (Figure 2), error detection in the robotic
cell station (Figure 3), quality control of the final product (Fig-
ure 4). The system employs pre-trained YOLO-based object
detection models to perform tasks such as object detection,
instance segmentation, and image classification. These tasks
are critical in industrial automation for inspection stations,
intelligent monitoring, and error correction. The application
detects five classes of objects: raw material pieces (by type
and color), empty warehouse spaces, assembled components,
defective parts, and final product configurations.

YOLOv8 employs a CSPDarknet53 backbone with approx-
imately 20–53 convolutional layers, processing 640x640 RGB
input images to output bounding boxes, objectness scores,
and class probabilities via an anchor-free head [15]; com-
pared to YOLOv9’s Generalized Efficient Layer Aggregation
(GELAN) backbone with Programmable Gradient Information

(PGI) for enhanced gradient flow, YOLOv10’s NMS-free dual-
assignment strategy with lightweight classification heads, and
YOLOv11’s C3K2 and C2PSA blocks for improved feature
extraction, YOLOv8 is less computationally efficient but sim-
pler. Standard training hyperparameters include a batch size
of 16, initial learning rate of 0.01 (SGD) or 0.001 (Adam),
momentum of 0.9, and 100–300 epochs with cosine learning
rate scheduling.

(a) Raw image of the warehouse (b) Detected warehouse

Fig. 2: Identification of raw materials and free spaces in the
warehouse

Figure 2a shows the raw image captured by a camera
positioned above the warehouse. Using video feeds and a pre-
trained YOLOv8 model with its default architecture, including
a backbone of convolutional layers as described in [7], the
system identifies available pieces and empty spaces, as shown
in Figure 2b. Each detected element is assigned a unique
identification number, a bounding box, and object contours,
with color recognition for assembly purposes. This enables
the industrial robot to select the correct piece based on
order specifications and supports warehouse management by
identifying empty spaces for carrier robots.

Model performance is evaluated using standard metrics,
suggested in [16]: Intersection over Union (IoU), Precision,
Recall, and Mean Average Precision (mAP) at IoU thresholds
of 0.50 (mAP50) and 0.50–0.95 (mAP50–95). These metrics
ensure accurate detection and robustness under varying light-
ing conditions. Enhancing the box alignment of the detected
objects in the image, YOLOv8 uses Complete Intersection over
Union (CIoU) [17] calculated with the following formula:

LCIoU = 1→ IoU +
ω2(b, bgt)

c2
+ εv (1)

where IoU is the Intersection over Union, ω2(b, bgt) is
the squared Euclidian distance between center points, v is
the aspect ratio of the image, and ε is the weighting factor
emphazing aspect ratio for low IoU .

Distribution Focal Loss (DFL) function enhances regression
accuracy, by treating box boundaries as probability distribu-
tions:

LDFL = →
∑

i→{l,r,t,b}

(yilog(pi) + (1→ yi)log(1→ pi)) (2)

where yi is the ground-truth offset for the box boundary
(left, right, top, bottom) relative to grid cell, pi is the predicted
probability distribution over discrete boundary offsets.



Figure 3 illustrates raw images captured above the assembly
carrier in Figure 3a and above the conveyor belt in Figure
3c, with processed images (Figure 3b, 3d) showing tracked
components during assembly using object detection models.
The dataset comprises 100 images collected at 1920x1080
resolution from industrial cameras, cropped to focus on rele-
vant regions, and annotated for five object classes. The small
dataset size reflects the proof-of-concept nature of this study,
leveraging pre-trained YOLO models to generalize from the
COCO dataset.

(a) Raw image of reconfigured
product

(b) Detected pieces

(c) Raw image of assembled
product

(d) Checked product

Fig. 3: Applications during the assembly process

The general output size formula for the convolution layer to
extract features for the object detection in all YOLO model,
based on [18] article, is:

Dimo =
Dimi + 2P →K

S
+ 1 (3)

Channelso = Nfilters (4)

where Dim is used for either width or height of the image,
P is the padding, K is size of the kernel, S is the stride, and
Nfilters is the number of filters applied on the input image to
determine the output feature channels Channelso. YOLOv8
convolutional layers are using Sigmoid Linear Unit (SiLU)
activation function, shown with the following formula:

SiLU(x) =
x

1 + e↑x
(5)

This activation function is used to introduce non-linearity
in the model, increasing the ability to learn complex features
for object detection.

A specialised object detection model ensures accurate com-
ponent placement, while an image classification model verifies
that the assembled product matches the customer’s specifi-
cations. Errors, such as a piece detected as “green” in the
warehouse but “blue” in the final product, are flagged for
correction. Faulty pieces damaged by pneumatic actuators are
also detected, enabling rapid error logging and correction to
minimize downtime.

In Figure 4, the final product is shown before entering the
storage station. The detection algorithm serves as the basis for
a final product inspection. The pre-trained YOLOv8 model,
using default hyperparameters and weights trained on the
COCO dataset, achieves reliable detection in this industrial
context. Figure 4b is the processed image of the raw image,
Figure 4a, where all parts are checked for damages or incorrect
configuration.

(a) Raw image of the final
product

(b) Detected product

Fig. 4: Identification of final product configuration

One of the main features that such a model must check is
the noise tolerance. This feature is mandatory because even
one false detection can compromise the production process.
This implies that the model must not confuse shadows with
anomalies and must not be influenced by the light conditions
in the room, as most of the traditional algorithms lose accuracy
exponentially due to lighting conditions. The robustness of the
model under different conditions is one of the key metrics that
must be taken into account when developing vision-based ap-
plications. This study demonstrates the practical application of
pre-trained YOLO models in a five-station manufacturing line,
achieving robust defect detection without requiring extensive
dataset collection or model retraining, unlike prior studies that
focus on custom-trained models for specific industrial tasks.

IV. RESULTS

The development platform chosen to perform the benchmark
test as core reference is the embedded system edge AI com-
puter with NVIDIA Jetson Orin NX 16GB as it demonstrates
substantial performance in ML applications. The GPU board
delivers up to 100 trillions of operations per second (TOPS),
making it well-suitable for high-demand workloads such as
real-time object detection, tracking and instance segmentation.
When paired with Ultralytics YOLO11, the Orin NX achieves
considerable results in metrics such as inference time, having



good compatibility with ML frameworks. It is a well-designed
and popular development embedded system even for industrial
applications, as seen in its AGX variants. Figure 5 presents
the results of the test of different open-source models and
frameworks available with Ultralytics packages. Across all
models, TensorRT offers the best speed in image processing
and in terms of compatibility since TensorRT is an advanced
software development kit (SDK) developed by NVIDIA and
designed for high-speed deep learning inference. It is well-
suited for real-time applications like object detection. This
toolkit optimizes deep learning models for NVIDIA GPUs and
results in faster and more efficient operations. This statement is
proved as seen in Figure 5a. The Frames per Second (FPS) rate
has the highest average score, both on light-weighted models
(yolo11n, yolov8n and yolov9n) and high-weighted models
(yolo11l, yolo8l, and yolo9l). In terms of precision, Figure
5b shows that different formats do not necessarily introduce
computational errors, as the scores are almost the same. The
only difference is when referencing larger models like yolo11l
and yolov8l, which have 10 times more parameters in the
structure than the lighter analog models yolo11n and yolov8n.
This conclusion is expected when taking into account the
features of TensorRT models as provided by the developer:

1) The first major feature of those models is the layer
fusion, which is a process of optimization in which
multiple layers of the neural network are combined into
single operations. This reduces computational workload
and reduces inference speed.

2) Another feature of TensorRT is the precision calibration
that allows models to be fine-tuned for specific accuracy
requirements.

3) This fine-tuning process is further improved by the auto-
matic tuning mechanism that selects the most optimized
GPU kernel for each layer of the model.

4) The last feature is efficient memory management that
optimizes memory allocation and reduces memory over-
head during inference.

Table 1 summarises the quantitative benchmarking results
for the Jetson Orin use case.

Another test set is shown in Figure 6, to evaluate if testing in
the cloud is more efficient for the final application. The same
configurations have been made to ensure that the platform
can work with multiple models to extract some results and
get some conclusions concerning cloud computing and cloud
model training, exposing the proprietary data to another server.
Looking at Figure 6a, it is obvious that the TensorRT format
offers the best performance, both on FPS and mAP50→95 in
Figure 6b. The same can be said about the TorchScript format,
which gives almost half the speed and the same precision
score. As the number of parameters increases, the FPS scores
fall by almost half of the initial values, indicating a higher
toll on the calculation unit. However, accuracy performances
increase by more than 10% for each model and format, which
means that the platform is not too sensitive to increasing
parameters or the model architecture. This solves some prob-

(a) FPS of different models and formats on Jetson Orin hardware

(b) Mean Average Precision of different models and formats on Jetson
Orin hardware

Fig. 5: Performances on Jetson Orin hardware

Model Format Size (MB) mAP50-95(B) FPS
yolo11l.pt TensorRT 101.7 0.725 23.14
yolo11l.pt ONNX 97 0.725 13.1
yolo11l.pt TorchScript 97.6 0.725 9.99
yolo11n.pt ONNX 10.2 0.61 55.48
yolo11n.pt TensorRT 15.2 0.6082 40.42
yolo11n.pt TorchScript 10.5 0.61 32.25
yolo11n.pt NCNN 10.2 0.6106 18
yolo11n.pt MNN 10.1 0.6099 16.96
yolo11n.pt PyTorch 5.4 0.6176 7.59
yolov8l.pt TensorRT 170.6 0.7554 20.2
yolov8l.pt TorchScript 167.2 0.7554 11.77
yolov8n.pt ONNX 12.2 0.6117 53.43
yolov8n.pt TensorRT 16.1 0.6092 48.77
yolov8n.pt TorchScript 12.4 0.6117 34.85
yolov8n.pt NCNN 12.2 0.6034 19.41
yolov8n.pt MNN 12.2 0.6104 17.23
yolov8n.pt PyTorch 6.2 0.6381 7.84
yolov8s.pt TensorRT 46.1 0.7136 68.93
yolov8s.pt TorchScript 43 0.7136 41.45
yolov8s.pt ONNX 42.8 0.7136 37.48
yolov8s.pt NCNN 42.7 0.7204 14.16
yolov8s.pt PyTorch 21.5 0.6967 9.17
yolov8s.pt MNN 42.7 0.7141 7.84
yolov9s.pt TensorRT 33.7 0.6974 21.4
yolov9s.pt TorchScript 28.4 0.6981 19.83
yolov9s.pt NCNN 27.7 0.6973 9.72
yolov9t.pt TensorRT 12.6 0.6428 90.96
yolov9t.pt TorchScript 9 0.6428 40.63
yolov9t.pt MNN 8.2 0.6423 16
yolov9t.pt ONNX 8.3 0.6428 11.86
yolov9t.pt NCNN 8.2 0.6348 11.44

TABLE I: NVIDIA Jetson Orin NX 16GB benchmarks



lems with compatibility matrices, making it easier to choose
a model and a format to develop the application. Of course,
the results can be exported from the cloud and processed on
local machines to make further improvements, thus reducing
the exposure of data and vulnerabilities to third parties. Disad-
vatages in using third party platforms are also underscored by
the constraints that are imposed by the developers. An example
discovered during the tests was the safe resource utilization
mechanism. These platforms typically impose limits on re-
source usage, such as execution time restrictions, time-outs,
and safeguards that prevent excessive resource consumption
beyond allocated quotas. This mechanism did not allow one
to benchmark bigger models like yolov8l, yolov10l or yolo11l
as it stopped the code from running and no results could be
recorded.

(a) FPS of different models and formats on Colab platform

(b) Mean Average Precision of different models and formats on Colab
platform

Fig. 6: Performances on Google Colab cloud

Table 2 summarises the quantitative benchmarking results
for the Google Colab use case.

Figure 7a shows the results of running multiple YOLO ob-
ject detection models of different sizes (n,s,l) and architectures
(v11, v9, v8) on the local machine. Based on those results,
models yolo11n and yolov8n are the fastest, with scores above
60 Frames per Second (FPS), corresponding with inference
times below 20 milliseconds per image, making them the best
option for real-time applications on the local machine. How-
ever, studying Figure 7b, the scores of these 2 models are the
lowest, with mAP50-95 below 65% for each format, compared
to the other models such as yolo11s and yolov8s which score

Model Format Size (MB) mAP50-95(B) FPS
yolo11n.pt TensorRT 13.3 0.6082 135.97
yolo11n.pt TorchScript 10.5 0.6082 83.35
yolo11n.pt PyTorch 5.4 0.61 28.28
yolo11n.pt PaddlePaddle 20.4 0.6082 19.96
yolo11n.pt MNN 10.1 0.6082 7.79
yolo11n.pt NCNN 10.2 0.6082 7.3
yolo11s.pt TensorRT 40.4 0.74 112.72
yolo11s.pt TorchScript 36.5 0.74 64.98
yolo11s.pt PyTorch 18.4 0.7526 26.36
yolo11s.pt PaddlePaddle 72.5 0.74 14.28
yolov10n.pt TensorRT 12.9 0.5715 248.28
yolov10n.pt TorchScript 11.1 0.5715 106.08
yolov10n.pt PyTorch 5.6 0.6981 28.63
yolov10n.pt ONNX 9 0.5715 8.29
yolov10n.pt MNN 8.9 0.5715 7.99
yolov10s.pt TensorRT 34.7 0.784 97.54
yolov10s.pt TorchScript 31.5 0.784 68.44
yolov10s.pt PyTorch 15.9 0.7881 22.92
yolov8n.pt TensorRT 17.7 0.6092 293.28
yolov8n.pt TorchScript 12.4 0.6092 130.86
yolov8n.pt PyTorch 6.2 0.6381 34.75
yolov8n.pt PaddlePaddle 24.4 0.6092 25.62
yolov8n.pt NCNN 12.2 0.6092 8.97
yolov8n.pt ONNX 12.2 0.6092 7.96
yolov8s.pt TensorRT 54 0.7136 118.56
yolov8s.pt TorchScript 43 0.7136 62.58
yolov8s.pt PyTorch 21.5 0.6967 33.15
yolov8s.pt PaddlePaddle 85.5 0.7136 28.02

TABLE II: Google Colab Tesla T4 GPU benchmarks

above 70% with almost each format. Those models are the
bigger versions of the first two, having more than 3 times
more parameters in the architecture. This difference in size
implies computational costs; as seen in Figure 7a, these two
models achieve under 20 FPS on each format. Moving even
further, models yolo11l and yolo8l, the models with almost
3 times and, respectively, 4 times more parameters than the
previous models, show limited improvement in any score. The
mAP50-95 scores of these two models are comparable with
their smaller versions, showing only disadvantages with the
FPS scores, which are half the scores of the latest. It is obvious
that, by increasing the size of the model, the complexity
increases, and the time needed to compute the final prediction
(the result) also increases, making the model less likely to
perform well on reduced hardware resources. One key point
of those models is the compatibility with the packages installed
on the machine, some models require more disk space, some
require older versions of software packages. This continuous
package dependency is time consuming when developing a
stable application, and it easily becomes insignificant as the
software progresses faster and new compatibility matrices arise
each time, some of them solving one issue and rising another.

Table 3 summarises the quantitative benchmarking results
for the Apple M3 use case.

V. CONCLUSION

The development of Industry 5.0 applications based on
artificial intelligence algorithms to help increase productivity
and quality in advanced manufacturing scenarios has been
adopted at a growing rate. The use of dedicated hardware and
compatible software libraries to solve common applications,



(a) FPS of different models and formats on Apple hardware

(b) Mean Average Precision of different models and formats on Apple
hardware

Fig. 7: Performances on Apple machine

Model Format Size (MB) mAP50-95(B) FPS
yolov9s.pt PyTorch 14.7 0.6973 9.68
yolov9s.pt TorchScript 28.5 0.6981 48.74
yolov9s.pt OpenVINO 28.2 0.6991 2.49
yolov9s.pt NCNN 27.7 0.698 25.02
yolov8s.pt PyTorch 21.5 0.6967 13.01
yolov8s.pt TorchScript 43 0.7136 52.27
yolov8s.pt OpenVINO 42.9 0.6951 2.6
yolov8s.pt NCNN 42.7 0.7059 19.49
yolov8n.pt PyTorch 6.2 0.6381 14.83
yolov8n.pt TorchScript 12.4 0.6092 109.58
yolov8n.pt OpenVINO 12.3 0.6034 6.28
yolov8n.pt NCNN 12.2 0.6062 54.75
yolov9s.pt PyTorch 14.7 0.6973 11.68
yolov9s.pt TorchScript 28.5 0.6981 39.44
yolov9s.pt OpenVINO 28.2 0.6991 2.68
yolov9s.pt NCNN 27.7 0.698 25.19
yolo11n.pt PyTorch 5.4 0.61 11.54
yolo11n.pt OpenVINO 10.4 0.6107 10.73
yolo11n.pt NCNN 10.2 0.6078 64.66
yolo11s.pt PyTorch 18.4 0.7526 11
yolo11s.pt OpenVINO 36.4 0.738 2.78
yolo11s.pt NCNN 36.2 0.7407 22.3
yolo11l.pt PyTorch 49 0.743 9.88
yolo11l.pt OpenVINO 97.3 0.7271 2.93
yolo11l.pt NCNN 96.9 0.7274 6.56

TABLE III: Apple Macbook M3 CPU/GPU benchmarks

such as quality inspection and process monitoring, is a move
known and appreciated by integrators in industrial fields. This
paper introduced an embedded learning application designed
for vision-based applications within a five-station connected
laboratory flexible manufacturing line. The quantitative results

presented here provide a comparative evaluation of multiple
generations of the YOLO real-time object detection model
family. Due to the small dataset size, this study serves as
a proof-of-concept, demonstrating the feasibility of applying
pre-trained YOLO models to industrial defect detection. In
addition, the paper discusses critical implementation consid-
erations and integration aspects with industrial automation
technologies, offering insights into the practical deployment of
such systems in manufacturing environments. These findings
contribute to advancing the field of automated quality inspec-
tions. Future work will involve collecting a larger dataset to
validate performance across diverse conditions.

REFERENCES

[1] E. Commission, D.-G. for Research, Innovation, M. Breque, L. De Nul,
and A. Petridis, Industry 5.0 – Towards a sustainable, human-centric
and resilient European industry. European Union, 2021.

[2] S. Rosioru, G. Stamatescu, I. Stamatescu, I. Fagarasan, and D. Popescu,
“Deep learning based parts classification in a cognitive robotic cell
system,” in 2022 26th International Conference on System Theory,
Control and Computing (ICSTCC), 2022, pp. 403–408.

[3] X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and industry
5.0—inception, conception and perception,” Journal of Manufacturing
Systems, vol. 61, pp. 530–535, 2021.

[4] J. Leng, W. Sha, B. Wang, P. Zheng, C. Zhuang, Q. Liu, T. Wuest,
D. Mourtzis, and L. Wang, “Industry 5.0: Prospect and retrospect,”
Journal of Manufacturing Systems, vol. 65, pp. 279–295, 2022.

[5] D. Weimer, B. Scholz-Reiter, and M. Shpitalni, “Design of deep convo-
lutional neural network architectures for automated feature extraction in
industrial inspection,” CIRP Annals, vol. 65, no. 1, pp. 417–420, 2016.

[6] J. Božič, D. Tabernik, and D. Skočaj, “Mixed supervision for surface-
defect detection: From weakly to fully supervised learning,” Computers
in Industry, vol. 129, p. 103459, Aug. 2021.

[7] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023.
[8] C.-Y. Wang and H.-Y. M. Liao, “Yolov9: Learning what you want

to learn using programmable gradient information,” arXiv preprint
arXiv:2402.13616, 2024.

[9] A. K. et al., “Segment anything,” 2023.
[10] X. Zhao, W. Ding, Y. An, Y. Du, T. Yu, M. Li, M. Tang, and J. Wang,

“Fast segment anything,” 2023.
[11] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan, “Yolo-

world: Real-time open-vocabulary object detection,” arXiv preprint
arXiv:2401.17270, 2024.

[12] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. da Silva,
“A comparative analysis of object detection metrics with a companion
open-source toolkit,” Electronics, vol. 10, no. 3, 2021.

[13] M.-D. Pavel and G. Stamatescu, “Flexible manufacturing system for
enhanced industry 4.0 and industry 5.0 applications,” in Intl Conf on
Distributed Computing in Smart Systems and Internet of Things, 2024.

[14] M.-D. Pavel, S. Ros, ioru, N. Arghira, and G. Stamatescu, “Control of
open mobile robotic platform using deep reinforcement learning,” in
SOHOMA Workshop. Springer, 2023, pp. 368–379.

[15] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, “A
comprehensive review of yolo architectures in computer vision: From
yolov1 to yolov8 and yolo-nas,” Machine Learning and Knowledge
Extraction, vol. 5, no. 4, pp. 1680–1716, 2023. [Online]. Available:
https://www.mdpi.com/2504-4990/5/4/83

[16] G. Jocher and J. Qiu, “Ultralytics yolo11,” 2024. [Online]. Available:
https://github.com/ultralytics/ultralytics

[17] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-
iou loss: Faster and better learning for bounding box regression,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, pp. 12 993–13 000, Apr. 2020. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/6999

[18] S. Sakib, N. Ahmed, A. J. Kabir, and H. Ahmed, “An overview
of convolutional neural network: Its architecture and applications,”
Preprints, February 2019. [Online]. Available: https://doi.org/10.20944/
preprints201811.0546.v4


