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Abstract— Localisation and disposal of unexploded ordnance
(UXO) is a crucial task that can save the lives of both
military personnel and civilians. In comparison to immediate
post-war intervention situations, EOD (Explosive Ordnance
Disposal) teams can now leverage emerging technologies based
on computer vision architectures, mitigating the perceived
risks associated with hands-on inspection of ammunition. The
paper analyzes the use of new convolutional neural network
architectures, in detection and identification of unexploded
ordnance by combining specialised domain knowledge with
computer vision models and methods. Additionally, it presents
image preprocessing methods, research techniques, results, and
conclusions. Moreover, we propose a complementary approach
to previous research, often based on the interpretation of
external sensor signals, representing the missing link in a com-
prehensive and extensive identification. Standardized metrics
such as mean average precision, precision, recall, and F1-
score are reported to evaluate the outcomes. Results, using
the YOLOv8 architecture, achieve up to 80.8% mAP for the
binary classification task (detection problem) and up to 90.6%
mAP performance for the subsequent identification task. The
work aims to offer a baseline study and new perspective on
addressing a highly significant issue: mitigating by computer
vision the risks associated with unexploded ordnance.

I. INTRODUCTION

According to US NOAA, unexploded ordnance (UXO) are
”explosive weapons such as bombs, bullets, shells, grenades,
mines, etc. that did not explode when they were employed
and still pose a risk of detonation”. These ominous remnants
of past conflicts conflict pose a continuing threat to human
health and safety and can also inflict significant economic
and environmental damage. Classical UXO identification,
removal and disposal methods have been typically marked
by painstaking, often hazardous, manual labor and old tech-
nological approaches [1], influenced by the subjectivity and,
sometimes limited, knowledge of human operators.

The emergence of computer vision and image processing
and the accelerated adoption of high performance convo-
lutional neural networks (CNNs), in diverse fields such
as medicine [2] and industry [3], contributes to the de-
velopment of intelligent systems for UXO detection and
identification. Given the limited datasets of unexploded
ordnances images, researchers have consistently sought to
address this deficiency by resorting to the interpretation of
signals from sensors, such as the analysis of GPR signals
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[4], or utilizing magnetometry [5]. Recent technological ad-
vancements, leveraging images captured by single-spectrum
or multispectral cameras [6], or based on state-of-the-art
explosive detection technologies within unexploded ordnance
[7], present a novel, efficient yet costly approach as viable
working systems, albeit time-consuming.

As UXOs are often present in challenging terrains, in-
cluding mountain passes with constructed trenches, leading
to unreliable internet connectivity. Essentially, bolstering
resilience requires an approach that addresses the identifi-
cation of unexploded ordnance both in a general context for
immediate risk assessment using limited data from portable
devices and in detail by class, enabling combat engineers to
make informed decisions for neutralization or destruction. An
additional complexity factor concerns the UXO that suffer
modifications and improvisations with regard to their original
design. Simultaneously, a binary classification model will
be developed, serving as a benchmark for comparison with
other architectures. Also, UXOs are frequently encountered
in incomplete states, often found in challenging and semi-
buried locations, including storage depots where multiple
unexploded ordnances are clustered, a first task was to
collect and curate a representative dataset for CNN model
training and validation. This dataset encompasses both real
unexploded ordnances and replicas and has been expertly
labeled using image segmentation techniques by a specialist
in the field of UXOs, supported by pretrained model.

The main contributions of the paper are two-fold:

• System architecture for UXO detection and identifi-
cation which includes dataset collection, curation and
image augmentation as preprocessing stage;

• Deep learning two-step CNN classification implementa-
tion and evaluation for baseline performance evaluation
using the state-of-the-art YOLOv8 architecture.

The rest of the article is structured as follows. Section II
introduces the scientific and technical background through an
examination of prior related approaches using deep learning
architectures for UXO classification. Section III describes the
primary methods employed to enhance detection, encompass-
ing the presentation of the dataset, acquisition module, image
analysis, and implementation details. Section IV conducts an
in-depth analysis of the achieved results, providing a detailed
discussion of the implementation, emphasizing its novelty
and offering standardized metrics. Section V concludes the
paper by providing insights into the potential practical sig-
nificance and prospects for expanding the approach in the
field.



II. RELATED WORK

The classification of unexploded ordnance (UXO) left over
from armed conflicts has a particular importance and has
drawn the attention of nations worldwide and researchers [8].
While detection technologies have advanced, researchers face
a challenge in the field of UXOs detection: low quality
datasets. To address the lack of images, researchers have
attempted to use additional data from external sensors, such
as the analysis of signals from active external sensors. In
some cases, researchers have tried to analyze signals from
metal detectors or Ground Penetration Radar [9] [4]. In
simple terms, signals known to originate from munitions are
used, and researchers search for a pattern in the formation of
these signals. Although promising, the results depend on the
material of objects, their distance from the sensors, and do
not take into account one of the most crucial aspects in the
world of detection: working environments are non-uniform,
mineralized, and urban areas may have ”parasitic” signals
that can alter the data. Also, it must be considered that in
conflict zones, there are other objects alongside unexploded
ordnance, objects that can mislead the sensors: military
equipment, remnants from armored vehicles, shrapnel from
explosions, and canned goods. Another problem is the cost,
which is high, and the intervention method is slow, which
is not favorable when dealing with a large quantity of
munitions.

The challenge of implementing computer vision models
for the detection of unexploded ordnance has been addressed
by other researchers as well. In creating the dataset, some
researchers [10] often used UXOs replicas that were pho-
tographed from various angles. A practical issue is that the
variety of UXOs types, brightness, and the introduction of a
diverse background were not considered, making it difficult
to account for false-negative results. However, a significant
positive aspect which they discovered is that by removing
certain parts of the ammunition (e.g., fuse, stabilizer), CNN
models manage to capture more relevant details and gen-
eralize much better even though the dataset is limited - a
fact that is highlighted in their paper, even with a limited
dataset efficient results can be achieved in the classification
of ammunitions. In another study [11], researchers attempted
to implement single-spectrum or multi-spectral cameras on
drones for ammunition detection. Inference occurred on a
server, with the drone acting as the client. The possibility
of the server-client connection being unavailable was not
considered, but still highlighting the advantage of using edge
devices: risk and time reduction. Therefore, our paper will
emphasize the relevance of edge devices, considering the
server’s unavailability for immediate inference. Furthermore,
according to the mentioned article, the use of a multi-spectral
camera did not significantly contribute in terms of costs and
time. Hence, in our case, we prefer using RGB smartphone
cameras. In another related work [12], authors tried to use
open-source datasets to train models. They demonstrated
that dataset classes do not necessarily need to have an
equal number of images, as the opposite would not reflect

reality. They also differentiated dataset classes well, based
on ammunition types, providing concise descriptions and
features. A problem in creating the dataset is that they used
only horizontally positioned and cropped objects without
background or with easily differentiable backgrounds. Also,
the unexploded ordnance from the dataset are fully equipped,
not reflecting a real-world scenario of initial identification. In
the paper, the fuse is introduced as a class of ammunition,
although it is more of a component of every unexploded
ordnance. This leads to errors in accurately determining
the class. Additionally, submunitions often represent mines
part of cluster bombs, causing confusion for the model
classification of submunitions, aviation bombs, or landmines.
All related works offer important information and hypotheses
that will be implemented in creating the dataset, selecting the
working methodology, training, and implementation, taking
into account the expertise of the authors of this novel paper
and other publications addressing the optimization of object
classification and localization in a general context, as will be
discussed in Section III.

To provide a new avenue for research and to save lives, the
introduction of a dataset with annotated images under varied
conditions is proposed. The images were collected from
both real missions with real UXOs, originating from armed
conflicts in Romania, and with replicas - UXOs without
active charge. Based on our knowledge, unexploded ordnance
found in the dataset originates from multiple sources of man-
ufacturing: Russia/Soviet Union, Germany, Great Britain,
United States of America, France, Italy, Austro-Hungarian
Empire, and Romania.

III. METHODS AND DATASETS
A. Methods

Methods must, above all, take into account the practical
aspects of the field. Using field expertise, it can be stated
that munitions are often found in altered, semi-buried con-
ditions, in hard-to-reach areas - old battlefields. A diagram
which emphasizes the client-server aspects is found in Fig-
ure 1. To address the detection of Unexploded Ordnance,
multiple methods will be employed, ensuring there is a
benchmark for comparison. The research process unfolds
through iterative and meticulous steps, beginning with the
development of a lightweight model designed for general
detection. This model is engineered to operate seamlessly
on edge devices, requiring minimal data consumption and
functioning independently of client-server connections. The
dataset undergoes augmentation to ensure uniform labeling
as ”unexploded ordnance,” with a concurrent emphasis on
integrating secondary performance metrics to optimize effi-
ciency. Continuing the progression, a model is devised to
leverage general recognition capabilities, now incorporating
a client-server architecture. This model enhances detection
capabilities, specifically targeting UXOs with manufacturing
anomalies. It also facilitates the validation of initial results
upon client-server reconnection. Simultaneously, it serves as
a benchmark for evaluating the trade-offs between perfor-
mance metrics variation and improved categorization accu-



Fig. 1. System Architecture for the Detection and Identification of Unexploded Ordnance

racy for subsequent models. These models require access to
high-computing servers and operate on datasets categorized
into multiple classes. Special attention is given to exploring
the effectiveness of ONE vs ALL techniques in addressing
undersampling to enhance performance metrics. Throughout
the research endeavor, all models are evaluated relative to
a baseline binary classification model (UXO Detected/UXO
Not Detected). This comparative analysis enables the track-
ing and quantification of progress percentage-wise, providing
valuable insights into the advancement of UXO detection
methodologies. As specified above, all models will be re-
ported relative to a baseline model, which is based on binary
classification (UXO Detected/UXO Not Detected), so that
progress can be tracked and quantified percentage-wise. A
diagram illustrating the approaches to the problem and how
to implement our models in an end-to-end solution is shown
in Figure 1. The process begins with the user, typically a
combat engineer, employing a portable device, such as a
phone or drone, referred to as an edge device, to capture
an image of a suspected unexploded ordnance. In an offline
setting, utilizing an optimized model, an immediate analysis
is performed to evaluate the likelihood of the presence of
ordnance. The results are then relayed back to the edge
device interface. Upon establishing a connection between the
edge client and server, the captured image is transmitted to
the server. Here, a more sophisticated version of the pre-
vious model assesses the probability of ordnance presence.
Concurrently, the server employs a model trained on the
labeled dataset, categorized according to ordnance classes.

This model addresses the fragmentation of the problem
into multiple classes and specifications, enabling precise
identification of the ordnance class. The server’s response,
confirming the prediction, is sent back to the client. If the
response indicates potential ordnance presence, the image
captured in step 1 is incorporated into the existing dataset
for future enhancements and updates. The problem will be
divided into several pieces, conducting an ablation study
[13] to iteratively and analytically establish the ideal balance
for a real-life situation. Therefore, based on the previously
presented information, this article will focus on the op-
timization approach to the problem itself, a performance
vs. compromise vs. practical application optimization. As
the base arhitecture, You Only Look Once (YOLO) V8, a
popular open-source architecture optimized for fast instance
segmentation, will be utilized, considering the need for fast
and accurate results in emergency situations [14] [15]. More
exactly, it represents the fine-tuned YOLO V8X-segment
model, with 71.8M parameters, convolutional neural net-
work, cross-stage partial connections, Leaky ReLU activation
function for hidden layers, 344.5 GFLOPs, with initialization
hyperparameters established based on our domain knowl-
edge, with subsequent tuning for 100 epochs. For edge device
inference, a post-training float16 quantization on UXO/NON-
UXO model is applied. The YOLO models are trained on
the MS-COCO dataset, consisting of over 330,000 images,
with classes number, nc, of 80 (plus background), containing
common objects in contexts, as standard best practice for
these types of applications.



Fig. 2. Unexploded ordnances from our dataset

The initial layers of an architecture are responsible for
learning general features e.g., lines, edges [16]. Fine-tuning
represents a suitable approach in weight initialization, aiming
to reduce time and computational resources consumption,
providing a robust final model. Moreover, YOLO offers the
advantage of being a one-shot detection architecture, thus
reducing the need for computational resources both during
training and inference. One-shot detection architectures are
suitable for deployment on edge devices. [17] A representa-
tion of the pipeline architecture is shown in Figure 3.

B. Dataset Description

The images from our proposed dataset were collected
from pyrotechnic interventions, both with real unexploded
ordnance from World Wars and with new inert munitions
that adhere to all visual characteristics of real ordnance.
Considering that munitions are often found in multiple
quantities, stored in depots, image segmentation techniques
were employed. Where the ordnance’s condition allowed safe
handling, it was placed in different environments to increase
the training data volume. Based on other researchers’ results
[10], the decision was made to disassemble models where
possible, removing certain components such as fuzes, to
diversify the dataset. Labeling was performed by an ex-
pert in unexploded ordnance, ensuring high accuracy and
consistency. Images were captured in various environmental
conditions, lighting, and angles. In Figure 2, a sample
with unexploded ordnances from the dataset is displayed.
The dataset facilitates the advancement of machine learning
algorithms dedicated to UXO detection and enhances sensor-
based methods. It also explores applications in detecting
objects camouflaged in the visible spectrum and serves as
a platform for evaluating neural convolutional architectures
in UXO detection. In Table I, the munition classes in
the dataset are listed. The selected munition classes were
chosen as they represent, in practice, the majority of types
encountered in interventions. Additionally, in certain cases,
these classes exhibit similar constructive features and can
be easily confused. Given that munitions are often found

in camouflaged environments, and considering that a false-
negative error could result in physical harm to the Explosive
Ordnance Disposal operator, a fourth category of images has
been introduced—namely, the background class—to limit
risks. From practical experience, it is more beneficial to
eliminate false negatives in such situations, meaning to have
false-positive cases, ensuring that no one is exposed to risks
in a false-detection case.

TABLE I
MAIN CHARACTERISTICS OF OUR DATASET

Classes Mortar Bomb, Projectile, Grenade
Number of UXOs instances 7880

Medium file size 2.5MB
Input size 800px x 800px

Background images 1330

In the case of the lite method, based on the general
identification of ordnance without specifying the exact type,
all classes of UXOs have been reassigned simply as ”unex-
ploded ordnance”. It is essential to highlight the advantage
provided by this method: the capability to detect improvised
or incorrectly manufactured munitions. Toward the end of
wars, when external pressure is high, there is a possibility
that munitions were improvised, combining elements from
one munition class with another. In Figure 4, a 60mm caliber
explosive projectile from the Second World War is depicted.
According to welding traces, the bomb stabilizer has been
replaced with a tail from an aviation bomb, and the fuse has
been changed, improvising the mortar bomb into an aviation
bomb. It is clear that this explosive projectile is in an oxidized
state, making it challenging to identify accurately.

A ”copy-paste on new backgrounds” method was uti-
lized as the basic augmentation technique, resizing labeled
objects to optimal dimensions in various backgrounds, as
recommended by the specialized literature [18]. Through au-
thors’ knowledge, the fact that munitions can be incomplete,
analysis of instances and backgrounds, augmentation meth-
ods such as HSV variations, rotation and translation were
established to capture even unfavorable cases. Additional
augmentations such as rotate, zoom, shear, and flip random
will be employed. Based on the fact that UXOs can be found
mixed as classes, overlapped, or incomplete, a mosaic-type
augmentation is also necessary, combining multiple images
and instances to obtain new samples.

Fig. 4. Oxidized mortar bomb with aviation bomb elements



Fig. 3. CNN-based Deep Learning Pipeline for UXO Identification

The dataset and specific annotations have been formatted
to adhere to the specific input of YOLO, while also providing
the capability to be easily adaptable to other architectures.

IV. RESULTS

For result analysis, the implementation has been carried
out in Python, using as GPU a NVIDIA RTX 4090 24GB
VRAM. The dataset distribution is 80% training data, 20%
validation data. The metrics used for evaluation are of two
types: primary and secondary. Primary metrics are mean
average precision, precision, recall and F1-score. Secondary
metrics related to computational aspects of the models.

Mean Average Precision is a metric in computer vision
that evaluates algorithms by computing the average precision
for each object class and then taking the mean of these
values across all classes i.e. the area under the precision-
recall curve:

mAP =
∑
n

(Recalln −Recalln−1)Precisionn (1)

Precision measures the quality of the positive prediction
of used model:

Precision =
TP

TP + FP
(2)

Recall measures the ability of the model to correctly
identify all positive instances in the dataset:

Recall =
TP

TP + FN
(3)

The F1-score is a metric commonly used in machine
learning to balance precision and recall. It is the harmonic

mean of precision and recall, providing a single score that
combines both measures:

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(4)

Results of standardized metrics for the six types of models
are presented in Table II. In Figure 6, more detailed results
for top-performing model are presented.

TABLE II
PERFORMANCE OF FINE-TUNED YOLOV8X-SEG. AN ADDITIONAL

BACKGROUND CLASS WAS INTRODUCED TO HANDLE FALSE-NEGATIVES.

Classification mAP Precision Recall F1
Binary 80.8% 85.9% 87% 86.44%

Binary-edge 79.2% 84.5% 78.2% 81.2%
Grenade/UXO 90.6 % 89.9% 84.6 % 87.16%
Mortar/UXO 74.7% 85.5% 84.3% 84.8%

Projectile/UXO 73.6% 89% 82.2% 85.4%
All classes 75.5% 89.1% 84.3% 86.63%

Fig. 5. Validation batch of multi-class model

The least performing model, with a classification mAP
of 73.6%, is ”Projectile/UXO”, while the top-performing



model, with a mAP of 90.6%, is ”Grenade/UXO”. The
”Projectile/UXO” model performs 7.2 percentage points
lower than the ”Binary” model, which has a mAP of
80.8%. Conversely, the ”Grenade/UXO” model outperforms
the ”Binary” model by 9.8 percentage points. An example of
validation batch with unexploded ordnances, based on multi-
class model (grenade, mortar bomb, shell, background) is
shown in Figure 6.

Secondary metrics are represented by preprocess, infer-
ence and postprocess times per image (Table III). The
disk usage for each model is 137MB. Models were tested
on Nvidia RTX 4090. For Binary-Edge model, test was
done on Qualcomm Snapdragon 780G (Post-training float16
quantization). Considering that the initial inference of a
model requires time for loading the model, and preprocessing
and post-processing steps depend on the input image and
the model’s output results, the inference was applied to all
images in the test dataset, and subsequently, the arithmetic
mean of the resulting times was calculated. The Binary
(UXO/NON-UXO) model is the fastest, while the edge
model is 4.24 times slower than the fastest model. The results
show that the models demonstrate good inference speed even
on edge devices, being conditioned by the computational
resources available.

TABLE III
PERFORMANCE IN TERMS OF SECONDARY METRICS [MS]. THE

PERCENTAGE FROM TOTAL TIME IS CALCULATED RELATIVE TO THE

FASTEST MODEL.

Model Preprocess Inference Postprocess Total
Binary 2.1 11 2 15.1

Binary-edge 4.3 53.41 6.4 64.11
Grenade/UXO 2.8 11.5 2.7 17
Mortar/UXO 3 12.5 3 18.5

Projectile/UXO 2.4 11.5 2.4 16.3
All classes 2.3 15 1.1 18.4

V. CONCLUSIONS

This study presented the precise and objective identifica-
tion of unexploded ordnance (UXO) using computer vision.
By harnessing advanced technologies, particularly through
the utilization of neural network architectures and edge
computing devices for emergency scenarios, combined with
a new and curated dataset, this research demonstrates a
promising leap forward in UXO detection and mitigation
strategies. The models exhibit highly encouraging results,
indicating their potential for real-world deployment and
future studies.

The GRENADE+UXO model’s superior performance
in general munitions identification compared to binary
UXO/NON-UXO classification highlights the efficacy of
nuanced approaches in addressing complex scenarios. Fur-
thermore, the adoption of standardized evaluation metrics
such as mean average precision, precision, recall, and F1-
score provides robust quantification of model performance,
facilitating informed decision-making in UXO management
efforts.

Two-step deep-learning methodology developed, the
dataset, and the results of the models open a new path
in Unexploded Ordnance identification, while also comple-
menting existing methods. In essence, this study presents a
transformative paradigm shift in UXO detection methodolo-
gies, offering a holistic approach that integrates cutting-edge
technologies with domain-specific expertise, following future
research, including by the authors, regarding optimization
methods, as well as the analysis and dissemination of the
dataset for the scientific community.
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