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Abstract—Convergence of operation technology (OT) and in-
formation technology (IT) in industrial automation is currently
being adopted as an accelerating trend. The Industrial Internet of
Things (IIoT) consists of heterogeneous sensing, computing and
actuation nodes that are meshed through a layer of communica-
tion protocols, and represents a key enabler for this convergence.
Experimental test beds are required to validate complex system
designs in terms of scalability, latency, real-time operation and
security. We use the open source Coaty – distributed industrial
systems framework to present a smart industry application inte-
grating field devices and controllers over the OPCUA and MQTT
protocols. The experimental evaluation, using both proprietary
automation components and open software modules, serves as a
reference tool for building robust systems and provides practical
insights for interoperability.

Index Terms—industrial internet of things, operation technol-
ogy, information technology, distributed systems, communication
protocols

I. INTRODUCTION

In modern automation applications, efficient monitoring
of factory data is a fundamental requirement for increasing
productivity and achieving economic and environmental effi-
ciency. It is no longer enough to collect data using proprietary
communication protocols and programmable logic controllers
(PLCs) using closed-source software components. To this end,
the Industry 4.0 concept brings as a novelty the convergence of
operation technology (OT) with information technology (IT)
specific design patterns, tools and libraries. It allows for open
inter-connectivity among various system components as well
as bridging previous gaps between the field, local control,
supervisory control and optimization/management layers of
the automation solution.

IT mainly deals with the retrieval, processing, security
and transmission of electronic data using computers, storage
equipment and network elements. Thus, any equipment that
has these characteristics is part of IT. Information Technology
is a subset of information and communication technology

(ICT), which makes pervasive communications a key element
of IT. OT is specific to the industrial environment and consists
of the control and monitoring of the physical elements through
the supervisory control and data acquisition (SCADA) system.
Legacy equipment used such as sensors and actuators are
usually hard-wired and not computerized, and those that are
computerized transmit data using proprietary protocols. These
proprietary protocols typically require a closed network [1].
Benefiting from recent standardization efforts in the field of
Industry 4.0 networking, several options have become avail-
able to integrate both proprietary and open industrial system
components through standards such as OPC UA [2].

The convergence of OT with IT is practically achieved
through the Industrial Internet of Things (IIoT), as networks of
sensing, control and communication devices which collaborate
to achieve common goals while adhering to the constraints of
the industrial environment. This concept consists of the inte-
gration of industrial equipment such as sensors and actuators
with software elements to increase the reliability and efficiency
of industrial processes. Today, IIoT is often used to gather,
process and transmit data from the industrial environment.
Traditionally, the flow of data from one piece of equipment
to another is rigidly controlled and is based on a centralized
architecture [3]. This potentially creates a single point of
failure in the network which can be mitigated through a
decentralized approach with multiple stakeholder agents.

We present our contribution with regard to an open, decen-
tralized implementation of plant-level monitoring using new
software tools where the main contributions are two-fold:

• An IIoT decentralized system architecture for system
monitoring based on the Coaty 1 lightweight open-source
framework for collaborative IoT;

• A practical evaluation of the architecture implementation
in a dedicated case-study using modern commercial in-

1https://coaty.io



dustrial automation equipment and software-based agents.

The rest of the paper is structured as follows. Section II
frames our contribution within the state-of-the-art with regard
to IIoT-based decentralized system monitoring solutions. Sec-
tion III presents the conceptualised system architecture for
scalable automation using distributed agents and the enabling
technologies. An experimental implementation using both
commercial and open components is evaluated in Section IV.
Section V concludes the paper with outlook on future work.

II. RELATED WORK

In [4] the authors evaluate the performance of various
IIoT protocols in a distributed control platform by focusing
on transmission time and bounds for various parametrisation
options. A standardized system configuration using embedded
RaspberryPi development boards with open-source protocol
implementations is used for performance measurements, in-
cluding scalability performance with multiple data consumers
in the automation network.

Leveraging the on-board computing resources of distributed
embedded systems within the edge computing paradigm for
industrial automation is argumented in [5]. A comparative
analysis is presented for various communication protocols
implemented on IIoT gateway platforms to integrate field-level
production data with a remote cloud platform for data analysis,
presentation and modelling.

In [6] an application for a low-cost historian module for
SCADA systems in the water industry is described. The system
is based on NodeRed technology and an OPC UA integration.
The parametrisation of the OPC UA server in terms of security
is highlighted as well as the functionality provided to the end-
user through a dedicated graphical user interface (GUI).

A novel approach to dynamic reprogramming of IIoT
application devices is introduced by [7] under the form of
dispersed automation. This allows for allocation of on-channel
computing tasks that are based on the specific context and role
of each network node. A scalable and flexible network fabric
is thus constructed which efficiently leverages all the resources
available in the system.

Several applications of the Coaty solution for collaborative
IIoT are presented in [8] and [9]. These showcase modules
such as augumented reality (AR) and blockchain-based app
marketplaces in an industrial context. Edge devices are classi-
fied according to their available resources and the applications
and services that they can access. The blockchain operates as
enabling technology for validation of application traceability.

In previous works we have argumented the integration
on wireless sensor network with cloud systems as support
backend infrastructure for complex monitoring [10]. In [11]
the fog computing paradigm was employed to exploit on-
node computing resources for efficient use of constrained
radio communication channels. Consensus algorithms [12] can
represent a feasible solution for distributed computing, in the
absence of a centralised coordinator for industrial automation
and control tasks. Localized models can be built based on

the collected data for on-line inference in various process
scenarios such as energy management [13].

III. METHODOLOGY

This paper proposes a system architecture for decentralized
monitoring for smart industry applications. In order to leverage
the recent developments in the field, this system is imple-
mented using specific IIoT communication protocols and new
programming instruments.

The main element of this architecture is the Coaty agent.
An agent is a standalone application that is able to retrieve in-
formation from an industrial system and further communicate
information to other peer agents in collaborative and ad-hoc
manner. The connection between agents is loosely coupled and
it does not need an entity to manage communication between
the entities.

The basic architecture to enable field data collection from
the sensors by the software agents is presented in Figure
1. The software agent includes both the OPC-UA server
and client functionality and connects through MQTT publish-
subscribe streams to the data source, in our case an industrial
temperature transmitter, and to the user interface, implemented
as a Node Red user front-end. Data is read from the software
agent using OPC-UA methods. The parametrisation of the
sensor can be realised directly from the user interfaced using
a standardized JSON (JavaScript Object Notation) format file,
easily accessible to compliant third parties. The JSON schema
used includes the device type and identifier as well as the
supported methods for requesting the data and adjusting device
parameters such as data format, communication and additional
services.

specifica cazului de utilizare implementata de solicitant determina modul de gestionare a acestor 
raspunsuri. De exemplu, solicitantul poate decide sa: 

• ia primul raspuns si sa ignore celelalte raspunsuri, 
• sa ia raspunsurile primite numai intr-un anumit interval de timp, 
• sa ia raspunsuri numai pana cand este indeplinita o anumita conditie, 
• sa gestioneze orice raspuns in timp 
• sa proceseaze raspunsurile definite de orice alta logica specifica aplicatiei. 

 

3. Descrierea aplicatiei 
3.1. Arhitectura 
 

 Principalul obiectiv al aplicatiei a fost utilizarea framework-ului Coaty in mod 
demonstrativ intr-o aplicatie industriala datorita avantajelor pe care le detine, implicand astfel 
componenta de IT in industrie. 

 Aplicatia consta in preluarea datelor de la senzori inteligenti si stocarea acestora intr-un 
server OPC UA folosind doar resurse open-source, dar si afisarea acesta intr-un dashboard. 

 

 

 

Fig. 2 Arhitectura Fig. 1. IIoT System Architecture for Pervasive Monitoring and Control -
Basic Architecture



The connectivity is handled through the Message Queue
Telemetry Transport (MQTT) communication protocol [14],
which is one of the main protocols used by the IIoT concept.
MQTT is know as a many-to-many communication convention
as it exchanges messages employing a central broker between
numerous devices. MQTT devices associated to the broker
with seemingly perpetual active TCP connection, this con-
nection is initially overwhelming on obliged devices. MQTT
does not back the message labeling with metadata or sorts to
assist devices to get it. The protocol design contains three
main components: a publisher, a broker and a subscriber.
The devices that inquires about a particular point registers
on it as a subscriber to be updated by the broker when the
publishers distribute his topic. The publisher exchanges the
data to the endorsers by means of the broker and operates as
a generator of information, at that point, the authorization of
the subscribers and the publishers are checked by the broker
for security assurance. The reference structure of a MQTT
data package is presented in Figure 2.

Field length 
(bits) 0 1 2 3 4 5 6 7
Byte 1 DUP RETAIN
Byte 2
Byte 3

Byte n
Byte n+1

Byte m

MQTT Fixed 
Header

QoS LevelMessage Type
Remaining Length (1-4 bytes)

Optional: Variable Length Header

Optional: Variable Length Message Payload

...
...

Fig. 2. MQTT Data Package

An important aspect in this architecture is the data integrity
at the MQTT protocol level that can make the difference
between a functional and a non-functional solution. Data
security is ensured by Transport Layer Security (TLS). TLS is
a protocol that runs on top of Transmission Control Protocol
(TCP) and it is the successor to Secure Socket Layer (SSL).
TLS enables safe communication between two machines from
beginning to end. TLS employs cryptography to ensure data
and end-point integrity, as well as data confidentiality. The
handshake protocol helps the two parties to agree on how
they will authenticate each other when creating a bond. During
this step, the cipher spec protocol also allows the application
data protocol to select the cryptographic primitives that will
be used to ensure data authenticity and confidentiality during
actual data transmission [15]. In our case, the temperature
sensor is connected to an IO-Link master with IoT physical
interface. Using this interface, the sensor is connected to the
Mosquitto broker and publishes messages to a specific topic.
The developed agent also connects to the same MQTT broker
and subscribes to that topic.

Another communication protocol used in the IIoT concept
is OPC Unified Architecture (OPC UA). OPC-UA has a
multilateral use and it isn’t only a client-server architecture.
It is also developed for PLCs and control devices, not only
for production management [16]. The introductory engineering
of OPC UA was based on the client-server communication
demonstrate where OPC UA clients can get to information

from the OPC UA server address space through the request-
response instrument. Be that as it may, concurring to the
current OPC UA details (portion 14) discharged by the OPC
Establishment, OPC UA moreover underpins the publisher-
subscriber (pub-sub) mode of communication. Based on their
part, OPC UA applications can be considered either publisher
which sends information or subscriber which gets information.
The pubsub component permits offbeat information communi-
cation and message-oriented middleware, which can be a pro-
gram or a hardware-based framework, is utilized to decouple
the OPC UA publishers and subscribers from each other. The
OPC UA middleware bolsters both broker-based and broker-
less messaging procedures [17]. The framework that we use
for development includes an OPC UA connector. With its
help, the agent connects to the OPC UA server and transmits
the information received from the sensor. The architecture is
based on the decentralized data transmission between several
monitoring systems that have direct access only to certain
sensors and can be scaled up as shown in Figure 3. In this
situation, the architecture accommodates multiple distributed
entities that can be sensors, controllers and actuation devices.
Their variables and methods are discoverable within the net-
work without a centralised repository. The user interface and
physical device components are optional and we can deploy
software agents that only process data and integrate with their
peers without collecting it directly or displaying it to the user.
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Fig. 3. IIoT System Architecture for Pervasive Monitoring and Control -
Advanced Architecture with Scalability



These monitoring systems, depending on the needs, must
also collect data from certain sensors to which they do not
have direct access. The agent maps the values of the sensors
stored in the OPC UA server to the Coaty Sensor Things API.
Sensor Things objects are similar to OCG SensorThings API
[18], but the entity schema is simplified. The API contains
its own custom object types which describe sensor metadata,
things where sensors are attached to, and observations, i.e.
the concrete sensor data which can be published using either
the Channel or the Advertise pattern. The developed agents
multicast the Sensor Things objects created with sensors
values from the OPC UA server to other agents from the same
network. These objects are delivered through a channel with
a specific channel identifier.

IV. RESULTS

The implementation of the system is performed on two
levels:

• node level
• network level

A. Node level

Each node consists of a Raspberry Pi model 3B+, an IoT
communication module, IFM AL1302 IO-Link master with
Profinet interface, and one or more sensors that use the IO-
Link protocol, such as the IFM TD2501 temperature transmit-
ter. The IO-Link master provides 16 digital inputs and 8 digital
outputs alongside two Ethernet network interfaces for Modbus
TCP and MQTT JSON communication and a dedicated IO-
link bus. The temperature transmitter communicates using IO-
link version 1.1 as COM2 with 38.4 kBaud or as standardized
4..20mA current loop. The experimental implementation is
presented in Figure 4.

Fig. 4. Node configuration

For the interface with the sensors that use IO-Link, the
communication module provides an IoT port with the spec-
ifications from Table 1.

TABLE I
IOT PORT SPECIFICATIONS

Features Description
Transmission standard 10Base-T; 100Base-TX

Transmission rate 10; 100
Protocol MQTT JSON

Note on interfaces Secure protocol; HTTPS

At the level of each node, the data from the assigned sensors
is collected by MQTT protocol. The Coaty agent acts as a
gateway to the communication module to which the sensor
is connected, which communicates via the IoT port using the
MQTT protocol. The MQTT message has a size of 32 bytes, of
which the length of the topic is 12 bytes. Using the Wireshark
network protocol analyzer [19] with the appropriate package
parsing profile, we visualize this information, including the
name of the topic, but also the value transmitted by the sensor.
Figure 5 presents a screenshot from the Wireshark GUI as a
snasphot of the implemented industrial communication.

Fig. 5. MQTT message

In order for the software agent to receive the sensor in-
formation, a raw pattern event is used. The ”observeRaw”
method, which receives the topic as a parameter, is used to
observe received messages that match the specified topic. The
result of this method is a message consisting of 2 elements, the
publication topic and the payload. The payload is a Uint8Array
object that is decoded to obtain the value of the sensor.

The agent also acts as a gateway to the NodeRed pro-
gramming tool for wiring together hardware devices. Thus,
it provides the data received from the sensors in two ways,
through an MQTT broker and through an OPC UA server.
The information is published using the ”publishRaw” method
which receives as parameters the payload and the topic to
which NodeRed will later subscribe.

On each device where the agent is located, an OPC UA
server developed in Node.js is also open. Using a connector
service for OPC UA, the Coaty agent has the OPC UA client
functionality. It connects to the OPC UA server using its
address as a parameter (EndPointUrl). The OPC UA client has
a specified name, but also the lifetime of the connection to the



server. The data sources are mentioned directly in the options
of the OPC UA client. Table 2 shows the options of the OPC
UA client. The sensor information collected by MQTT, using
the created OPC UA client, is stored in the OPC UA server
using the ”writeDataValue” method which has as parameters
the data source and the data value.

TABLE II
CONFIGURATION FOR OPC UA CLIENT

Options Description
EndPointUrl OPC UA server address

ConnectionOptions Options such lifetime or client name
DataSources These are defined the OPC UA data sources

to be monitored

In our situation, the agent is a data monitoring point. There-
fore, a graphical interface is needed to display the collected
data. The solution chosen is to use the NodeRed tool [20] as
in Figure 6, due to the ease of connection to the Coaty agent,
the graphical benefits and also due to the fact that at the base
of this tool and the Coaty framework is Node.js. Retrieving
information from the Coaty agent is carried out in two ways:
using MQTT or using OPC UA.

Fig. 6. GUI in NodeRed for Data Visualization

A sample of the monitored network traffic is provided in
Figure 7. This illustrates both MQTT and OPC UA traffic,
with a higher transmission rate (once every five seconds) given
the temperature process variable.

In order for the information to be passed on to other
Coaty agents, it is mapped in the form of Coaty objects,
more precisely in the form of Sensor objects that observe and
measure one property and have a predefined structure that can
be configured:
{

name: string,
objectType: SensorThingsTypes.OBJECT_TYPE_SENSOR

,
coreType: "CoatyObject",
objectId: Uuid,
parentObjectId: Uuid,
description: string,
unitOfMeasurement: UnitOfMeasurement,

Fig. 7. Captured network traffic

observationType: ObservationType,
observedArea?: Polygon,
phenomenonTime?: TimeInterval,
resultTime?: TimeInterval,
observedProperty: ObservedProperty,
encodingType: SensorEncodingType,
metadata: any

}

These Sensor objects are registered to a ”Thing” type object,
which is actually a Raspberry Pi where the Coaty agent is
located. The ”Thing” object is also a Coaty object that can be
parameterized according to a predefined structure:

{
name: string,
objectType: SensorThingsTypes.OBJECT_TYPE_THING,
coreType: "CoatyObject",
objectId: Uuid,
description: string,
properties?: { [key: string]: any; },
locationId?: Uuid

}

B. Network level

In the network, sensor objects are transmitted using
an event-based communication pattern. In the event-based
paradigm, messages are generated aperiodically given changes
in the process variables or specific consumer requests. The
Channel pattern is used, which offers an efficient method of
pushing Coaty objects to the observers in the network that
use a specific channel identifier. The software entities use
multicast transmissions to distribute the objects to interested
parties. The associated channel event data structure uses a
JSON format that includes both the single or multiple object
references and the privateData field. As optional component,
the privateData field can be used to distribute application-
specific options through key-value pairs.

For this application, we considered the channel identifier to
be the very MQTT topic used for data collection. Thus, each
observer of each agent observes the objects that interests him
specifying the channel identifier:

• Temperature Sensor: ”/temperature”
• Pressure Sensor: ”/pressure”
• Humidity Sensor: ”/humidity”



Within the network, the software agent does not know about
the existence of the other agents, it only provides the informa-
tion in the form of objects and observes other messages from
other agents depending on the channel identifiers used. Given
this fact, the expansion of the network can be done easily,
without intervening in its configuration, thereby achieving
scalability and eliminating single points of failure for increased
robustness. For larger networks a clustered implementation can
be envisioned to assemble agents into functional groups that
serve persistent or opportunistic application goals depeding on
the design objectives.

V. CONCLUSION

We presented an application of smart industry decentralized
monitoring integrating industrial internet of thing technologies.
The main advantage of this approach is that it provides
an uniform abstraction layers based on state-of-the-art open
industrial technologies that can integrate control equipment,
sensors and actuators across manufacturers. The system can be
adapted and configured for each particular application domain
or industry with competing priorities: latency, throughput,
resilience and security. The main research scope has been
to validate the interplay of various conceptual, open-source
and standardized technological components into a unitary
approach. The results are promising towards enabling easier
Industry 4.0 application development using reusable plug-and-
play function blocks in increasing levels of complexity e.g.
from reading a single sensor values to distributed queries
across networks of interconnected agents. Both wired and
wireless network connections are supported for heterogeneous
integration given the increasing penetration of wireless devices
in industrial networks that significantly reduce installation and
maintenance costs over large lifetime of automation systems
and equipment.

The current goal is to build out a test-bed for industrial
internet of things for extensive benchmarking and imple-
mentation in closed-loop control for process control (level,
flow, pressure) and smart manufacturing (position, speed). By
including the controller in the network e.g. as industrial PC or
specialized PLC-type device we can thoroughly evaluate the
end-to-end performance of the architecture and implement and
adaptive parametrisation scheme that considers the network
and field level status for achieving the control objectives. This
can be helpful for validating theoretical bounds of control
performance derived from the analytical design based on
the system models for both continuous, hybrid and discrete
processes. As previously closed industrial technologies open
up, the need for reliable security mechanisms is also acknowl-
edged and will be further considered in future work based on
a self-evaluation of process task criticality.
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[13] G. Stamatescu, R. Entezari, K. Römer, and O. Saukh, “Deep and efficient
impact models for edge characterization and control of energy events,”
in 2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), 2019, pp. 639–646.

[14] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi,
“Internet of things: Survey and open issues of mqtt protocol,” in 2017
International Conference on Engineering MIS (ICEMIS), 2017, pp. 1–6.

[15] C. Lesjak, D. Hein, M. Hofmann, M. Maritsch, A. Aldrian, P. Priller,
T. Ebner, T. Ruprechter, and G. Pregartner, “Secure smart maintenance
services: Hardware-security and tls over mqtt,” in 2015 IEEE 13th
International Conference on Industrial Informatics (INDIN), 2015, pp.
1243–1250.
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