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Abstract—Current trends and data show that Electric Vehicle
(EV) adoption has significantly increased in the past years in
the developed world and will continue to grow towards a 23%
market penetration by 2030. An important challenge hindering
this mobility transition is range anxiety in direct connection to
infrastructure constraints related to the availability, cost and
ease of access to suitable charging options. Starting from the
existing situation we tackle the issue of new Electrical Vehicle
Supply Equipment (EVSE) station installation in urban areas.
We present an optimization model that accounts for EV density,
usage, battery, capacity and estimated waiting time i.e. user
comfort as decision support tool for service providers and city
planners. The output yields optimal positions for new EVSE
installations by maximising operator profit, user convenience
or a weighted balance between the two. Mixed Integer Linear
Programming (MILP) is used as a technique to solve the
optimization problem with CPLEX/Matlab implementation. The
model is suitable for both offline and online running as well
as for multi-time period evaluation under dynamic constraint
adjustments. The results show the feasibility of our approach
based on real data from publicly available repositories such as
Plugshare and EV registration records.

Index Terms—electric vehicle, optimization, charging infras-
tructure

I. INTRODUCTION

Over the last ten years, electric vehicles (EVs) have been
gaining market share and increased user acceptance, repre-
senting one of the promising solutions for promoting green
energy initiatives. According to the US Energy Information
Administration (EIA) statistical database, it is possible to
highlight the total energy consumption by end users as well
as carbon dioxide emissions from developing countries and to
state that the transport sector holds about 27% of the energy
consumed in the world with a percentage of greenhouse gases
of 33.7% [1]. Electric vehicles can become a robust solution
for lowering the global emissions of greenhouse gases. Using
vehicles powered by electricity, yields not only a cleaner
environment, but also reduces user operating costs compared
to conventional vehicles. A study conducted on the market of
electric vehicles in the USA by [2] indicates that an electric
vehicle costs 0.015 USD/1.6 km compared to conventional
vehicles at 0.096 USD/1.6 km.

According to the US Department of Energy (USDoE),
in the case of conventional vehicles, approximately 15% of
total energy consumption is used for starting the vehicle and
for powering accessories. Most of the energy consumed is

converted to heat during the combustion process which directly
and consistently contributes to global warming [3]. On the
other hand, electric vehicles consume more than 75% of the
energy to run the vehicle. Energy efficiency and the positive
impact on the environment are thus the key selling points of
electric vehicles.

Nowadays, the number of studies related to EVs is in-
creasing and cover several areas such as: social studies e.g.
the influence of sustainable transport on society and the
environment, economics e.g. market penetration and economic
changes due to the increase of electricity consumption, com-
puter science e.g. computational algorithms for recharging
infrastructure management, telecommunications e.g. protocols
for communication with charging or payment stations and
mobile network infrastructure, electrical engineering e.g. de-
veloping less expensive and longer life batteries. Due to the
increase in the use of electric vehicles, the effects they have
on the environment, the economy and on the national electric
system are becoming more significant, including the role of
their batteries in balancing local microgrids [4].

Even with the current trend of an evolving electric car
market, there are several obstacles that prevent electric vehicles
from reaching their full potential, such as: battery storage ca-
pacity, battery price, battery life, charging time and availability
of electrical vehicle supply equipment (EVSE) [5]. Although
the number of public charging stations has increased, they are
still not sufficient. Together with the long charging time, this
is a major obstacle against widespread adoption.

In this context, this paper presents an optimization model
that accounts for EV density, usage, battery, capacity and
estimated waiting time i.e. user comfort as decision support
tool for service providers and city planners. The output yields
optimal positions for new EVSE installations by maximising
operator profit, user convenience or a weighted balance be-
tween the two. A parallel can be drawn to previous works, for
example in information systems to assign virtual machines to
servers under capacity constraints [6]. Section II presents the
scientific context of the work, alongside recent publications on
optimized EVSE deployment. Section III discussed a justifica-
tion for the chosen problem. Section IV details the formulation
of our optimization problem including the objective function
and associated constraints. Section V presents the results on
a realistic test case within a large city in Europe. Section VI
concludes the paper.



II. EVSE DEPLOYMENT — STATE OF THE ART

Since a key element of the adoption of electric cars is a
network of high availability charging stations, several studies
focus on the development of charging infrastructure. The
deployment of electric vehicle charging stations is one chal-
lenging issue with the EVSE needing to be placed in the
right position. There are two main points factors to consider
when planning EVSE placement [7]: grid resources and travel
time. From the point of view of a traveler, studies obtain the
locations of the charging stations from the traveler’s behaviour.
These studies can be divided, in turn, into two groups: the
development of charging infrastructure between cities and
within cities with the general approaches of these groups being
different. The development of charging infrastructure between
cities generally uses a traffic-based approach [8], while devel-
opment within cities uses a node-based approach [3]. However,
there are exceptions. The reason for these differences is the
fact that the limited autonomy of most electric cars currently
leads to short trips in the metropolitan area, but currently limits
long trips of more than 300km. Therefore, the demand for
charging in urban areas occurs at the origin or destination (O-
D) of the trip, while, in the case of a trip between cities, it can
occur also during the trip. The node-based approach assumes
the existence of demand points, which are specific for charging
requests within cities. This paper tackles the problem of EVSE
optimized deployment within the city of Bucharest, Romania,
located at 44.4396 degrees of latitude and 26.0963 degrees off
longitude with around 2 Million inhabitants and a metropolitan
area of 1811 km?.

Other authors, as in [9], provide the data science perspective
review of the interdisciplinary area at the intersection of green
transportation, energy informatics, and economics. Reference
[10] indicates that electric vehicle charging stations should
be regarded to comprise multiple types of charging facilities,
with different rated charging power, during the planning stage,
and a new optimisation model is proposed for the target to
minimise the annualised social cost of whole EV charging
system. The paper [11] focuses on the return of investments
on EV charging stations and proposes a Mixed Integer Linear
Programming (MILP) model based on Geographic Information
System (GIS) to identify the optimal location of charging
stations in cities. Traffic flow data and land-use classifications
are used as important inputs, and six important constraints are
included in the MILP model with the objective function of
maximising the total profits of new charging stations.

The authors of [12] introduce a technique for optimal
location and sizing of fast charging stations which minimises
the total charging cost taking into consideration transportation
loss, grid power loss and build-up costs, Google Maps API,
battery state of charge, road traffic density and grid power
losses. [13] synthetically considers three indicators of user
satisfaction: charging convenience, charging cost and charging
time. Considering the load and charging requirements, the
model of electric vehicle charging station location and volume
is established. Using an artificial immune system algorithm,

an optimised solution of charging station deployment is de-
veloped. Reference [14] tackles the charging needs of electric
vehicle owners taking into consideration the trade-off between
range requirements and battery capacity.

Current studies can be further classified as follows: using
real data and using simulated data. A novelty of the paper
stems from the fact that optimisation strategies for deployment
of EVSE station are rarely using real data which can, with little
effort, be tested at large scale in demonstrator sites. There is a
growing gap between simulation-based approaches and market
facing innovations which can be eventually be integrated into
commercially-viable products and services. All the data used
in this study is real data which has been retrieved from the
PlugShare! platform. The algorithm can be replicated with
little effort upon any city and can be combined with novel
methods for energy forecasting in order to anticipate future
demand balancing needs [15].

III. ALGORITHM DESCRIPTION

In order to formulate the optimization problem we first will
respond to several questions listed below:

A. For what kind of vehicles is the proposed algorithm suit-
able?

Cars whose transmission energy is provided only by batter-
ies are known as battery electric vehicles (BEV), as compared
to hybrid electric vehicles (HEV) or plug-in hybrid vehicles
(PHEV). BEVs can only be operated based on the energy
stored in their batteries and their autonomy can vary depending
on battery capacity. The battery is also the single largest cost
in the manufacturing of the BEV and its capacity becomes a
major market differentiator. In general, with a single charge
typical BEVs can currently reach between 100km-250km,
while the top models can go much longer, between 300km
and 500km. This range depends on the pattern of operation
and driving style, car configuration, road conditions, weather
conditions, battery type and age. Electric propulsion offers
high torque and instantaneous response, even at low speeds.
These advantages, make them well suited for use in the
urban environment, which requires moving at low and medium
speeds, with frequent acceleration/deceleration cycles. The
present paper considers only cars of BEV type.

B. What type of charging system does the algorithm target?

The EVSE for commercial use is typically composed of
three levels of charging power and type. According to SAE EV
AC Charging Power Levels, they can be classified as follows.

Alternating Current (AC) Level 1 equipment, often referred
simply as Level 1, provides charging at a 120 volts AC plug.
Level 1 charging is used usually when is available only a 120V
outlet, such as socket at a standard household voltage. Most
of the electric cars are fitted in standard with a Level 1 cord.
The power used to fully charge an electric vehicle at a Level
1 plug can be approximated with the power used by a toaster.

Uhttps://www.plugshare.com



Alternating Current (AC) Level 2 equipment, or Level 2,
provides charging from a 208V to 240V AC plug. Level
2 charging can be used in both commercial and residential
charging. The power used to fully charge an electric vehicle
at a Level 2 charging station can be approximated with the
power used by a clothes dryer.

DC Fast Charging directly charges the car battery, as
compared to AC charging which passes through the EV on-
board power electronics systems for conversion, and enables
rapid charging along heavy traffic corridors usually used for
commercial charging only. The power used to fully charge an
electric vehicle at a DC charging point can be approximated
with the power used by 5 up to 10 central air conditioners. A
comparison of the three supply equipment described above is
provided in Table I and Table II.

TABLE I
COMPARATION OF CHARGING LEVELS - VOLTAGE, POWER, CURRENT
(ADAPTED FROM [16])

Charging Level Voltage [V] | Current [A] | Power [kW]
AC Level 1 120 12 - 16 1.0-14
AC Level 2 240 < 80 3.6-19.2

DC Fast Charging 480 < 125 20 - 72
TABLE 11

COMPARATION OF CHARGING LEVELS - KM PER CHARGING HOUR
(ADAPTED FROM [16])

Charging Level | Power [kW] Power Km per
similar to charging hour
AC Level 1 1.0-14 Toaster 35t 8
AC Level 2 3.6-19.2 Clothes dryer 16 to 32
DC Fast 20 - 72 5-10 Central air 80 to 112
Charging conditioners

Another differentiating factor is the plug type: Type
1, Type 2 or one of the main two DC charging stan-
dards CCS/ChaDeMo are used. According to Plugshare, in
Bucharest there are only 24 charging stations registered on
the web site from a total of 148 charging station representing
a percent of 16.21%, with a Type 1 plug. There are 91 charging
stations registered on the web site from a total of 148 charging
station representing a percent of 61,5% with a Type 2 plug.
Finally, there are 33 charging stations registered on the web
site from a total of 148 charging station representing a percent
of 22,29%, for DC fast charging. Analysing Table III which
provides a summary of the number of electric vehicle charging
station installed in Bucharest by type, it can be stated that
the common/used type of supply equipment is AC Type 2.
Considering these, the algorithm, used in this paper, proposes
optimal positions for new EVSEs of Type 2.

C. Supply equipment cost/site installation

Analysing the public prices offered by the manufacturers
of commercial Type 2 charging stations and costs provided
in the paper [7] we can conclude that a suitable cost for the
deployment of an EVSE currently stands at 2305 Euro. This

TABLE III
NUMBER OF CHARGING STATION INSTALLED IN BUCHAREST BY TYPE
Plug type Number | Percent
Type 1 24 16,21%
Type 2 91 61,5%
DC Fast Charging 33 22,9%

considers multiple factors such as materials, labor costs for
installation, permitting costs and applicable taxes.

IV. FORMULATION OF THE PROBLEM AS A MIXED
INTEGER LINEAR PROGRAMMING PROBLEM

This section presents an optimisation algorithm that, taking
into account the density of electric cars in a certain region, the
charging demand of users in a certain region, user satisfaction
and the costs for installation requests provides the optimal
positions for the installation of new stations by maximizing
the operator profit, the user comfort or a balance of the two.
This algorithm can be used as a decision tool for service
providers and urban planners and can serve to mitigate local
consumption peaks or other types of energy events [17].

The optimization problem was formulated as a mixed in-
teger programming (MILP) problem. The CPLEX utility was
used to implement this type of problem. The model is suitable
for running both online and offline, as well as for a multiple
evaluation with the adjustment of dynamic constraints. The re-
sult shows us the feasibility of how we approach the problem,
based on real data from publicly accessible directories, such as
Plugshare and electric car registration records. The notations
used for this section are the following:

D, is the demand for EV charging from location i

c¢ij  location insurance rate i with charging station ]
i.e. the users satisfaction

x;; decision to cover the demand of EV charging
from location i with a station from the location j

C;  the capacity of station j (measured in car -
hours/month)

A maximum available budget for deployment

Yj the decision (binary O or 1) to build another
charging station

B; the cost of deployment for the one charging

station
The objective function of the proposed optimization prob-

lem is described as:

Max f:Z ZDi'Cij'IijSCj (D

iEN jEM

Subject to: Constraint 1: The sum of the requests and
decisions to satisfy the load of the demand in location j in
with a station in location ¢ must be less than or at most equal
to the capacity of station j.

Z D;-zi; < Cj (2)
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Constraint 2: The sum of the costs for requests to install a new
station must be less than or at most equal to the maximum
possible funding for installation.

> Biy<A 3)
jeM
Constraint 3: The amount of decisions to meet the demand
for charging electric vehicles at location j with a station at
location ¢ must be less than or equal to 1.

jEM

Defining user satisfaction: A private car in an urban area
is usually parked most of the time near the place where the
driver carries out his daily activities. Users satisfaction will
be measured by access to the charging stations near these
locations and weighted by the time spent at each of them.

The concept of immediate coverage is measured every time
a given location and reflects the user’s demand for charging
within an acceptable distance from the nearest public charging
station, via the shortest possible route on the network [18].
If this condition is met, then the location is considered to
be covered instantly. In this work we will consider that the
distance that the user of an electric car is willing to walk to the
nearest charging station is similar to the distance that a person
considers reasonable a walking distance to a bus station. So,
the overall distances between the bus stations are about 400
meters, being generally slightly larger in Europe than in North
America. [19] and [20] used in their studies the same radius
distance of the coverage area for a bus station.

The degradation of user satisfaction depending on travel
distance to/from the EVSE is expressed as:

. 1 . if dij < dfu”
cij = % ifdfull Sd” Sdmaﬁ, ViEN,jEK
0 if dij > dyun
&)
where

o N represents the set of zones

o K is the set of possible charging station locations

e c¢;; the rate of securing the location i with the charging
station j

e d;; the distance from location i to the charging station j

To represent the empirical behaviour, a three-segment func-

tion in Figure 1 is considered to evaluate the user satisfaction
degradation based on distance:

o first segment with an user satisfaction of 1 (100%) for
distances below the full satisfaction distance (d ¢,,;)

« the second segment with a linear satisfaction degradation
rate, from 1 to 0, between the full satisfaction distance
and the maximum (partial) satisfaction distance (dy,q,)

« and without any satisfaction for distances greater than the
maximum allowable distance

Other user satisfaction curves can be evaluated such as

piece-wise exponential functions and s-shaped curves depend-
ing on personalised user preferences.
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Fig. 1. User satisfaction

V. RESULTS

The algorithm was implemented in the CPLEX environ-
ment. CPLEX is a high-performance mathematical program-
ming solution for linear programming, mixed integral pro-
gramming and quadratic programming. CPLEX Optimizer
provides the power to solve large scale real-world opti-
mization problems with good multi-platform computational
performance. CPLEX offers numerous algorithms to solve
linear programming problems e.g. the primary or dual simplex
algorithm, the barrier algorithm and the network algorithm can
be chosen. The barrier (or interior point) algorithm provides
an efficient approach especially in the case of large problems
with rare values. CPLEX can very effectively solve arrays
with rare values. A preprocessor is used to reduce the size
of the problem before solving it, sometimes by an order of
magnitude. CPLEX is very robust and efficient.

The CPLEX branch-and-bound algorithm for solving mixed
integral programming problems uses modern functions such as
the cutting plan and heuristic method to find complete solu-
tions. In combination with the state-of-the-art preprocessor,
these features make CPLEX a very powerful tool for solv-
ing large and difficult problems of mixed full programming.
CPLEX provides a Benders decomposition algorithm, which
can be used to solve linear problems with a decomposition
structure, including stochastic programming problems with
integer variables in the first phase.

A. Case Study 1 - Validation of the algorithm on a minimum
test network

We present a test case study by applying the optimization
model on a small scale charging network, which can be scaled
up to cover the whole city. For testing the algorithm the
network includes the nodes S1, S2, S3, S4, S5 equivalent to the
charging point placement. The algorithm was validated using
the following input data:
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Cost per station 2305 Euros Fig. 3. Map with the Demand for the City of Bucharest

Maximum budget | 23000 Euros

A simplifying assumption is that charging demand is ex-
pressed in the number of charges per month, without consid-
ering the average time per charge. The test example can be
mapped onto a 2 x 2 cell subset from the real data, while
considering that the cells are squares with 500 m sides. The
network is analyzed by calculating the distance between any
two nodes, the node with the highest demand is selected and
an optimal output is provided to lessen the burden on it by
choosing nodes where the demand—distance metric is optimal.
Figure 2 graphically depicts the outcome of the algorithm on
the test case. In this case, S1 is first chosen and the nodes
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Fig. 2. Test network diagram

that are within an acceptable distance are selected. That leads
to the demand in node S1 to be transferred to node S2 at a
distance of 0.14 km and to node S5 at a distance of 0.42km.
The distance to nodes S1 and S4 are considerably higher at
0.77km and 0.74 km respectively. Next step concerns the node
S2 with the second highest charging load, which is redirected
to nodes S3 and S4, accounting for the demand constraints on
nodes S1 and S5.

B. Case Study 2 - Validation of the algorithm on the Bucharest
network

Based on real collected data, the charging demand for the
city of Bucharest is analyzed. Figure 3 illustrates the charging
demand distribution. The starting point of the algorithm was

the available charging station already deployed in Bucharest
in Figures 4 and 5. The map has been divided into equally
sized, square, cells covering the metropolitan area of the city.
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Fig. 4. Bucharest Map with the Charging Station

After completing the data collection and structuring, the
validation of the algorithm on the Bucharest city network
taking into account all the restrictions specified above was
carried out. Initially, the result were unsatisfactory due to
the fact that for the existing infrastructure currently the user
satisfaction restriction that involves a maximum travel of 0.4
km it cannot be satisfied because the distance between the
stations is much greater. Taking into account these results
obtained initially, we gradually relaxed the restrictions in order
to be able to offer a feasible solution for the current case
study. Restrictions were relaxed by the modification of the
user satisfaction function, thus: d,;; was adjusted to 0.8 and
dmaez Was adjusted to 1.6.

In this case, following the application of the algorithm, 49
modifications from the initial network were obtained.
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Fig. 5. Map with the Distribution of Charging Station in the City of Bucharest

The results were organized in table VI under the following

structure, where:

o i, j represent the ID-s of the states associated with the
request
« the distance between 2 stations (road <i-j>) was calcu-
lated based on the coordinates of each station
« the decision represents the suggestion to increase or not
(1-yes, 0-no) the loading capacity of the station from

location i
TABLE VI
ALGORITHM OUTPUT FOR BUCHAREST CASE STUDY
St. i St. i St. j St.j Road x-y | Connection | Dec.
demand demand itoj
St. ID v/day St. ID v/day km
45 1 90 25 1.01 <45 90> 1
44 1 39 6 0.61 <44 39> 1
34 1 112 25 1.09 <34 112> 1
32 1 19 500 0.57 <32 19> 1
31 1 7 15 0.29 <31 7> 1
30 1 37 375 1.01 <30 37> 1
28 4 84 25 1.03 <28 84> 1
26 1 86 10 1.17 <26 86> 1
44 5 42 115 1.21 <24 42> 1

VI. CONCLUSIONS

We presented an optimization model for EVSE installation
in dense urban areas. The model accounts for EV density
in a given area, user demand for the charging service, user
satisfaction and installation costs for the network operator.
The output consists of the optimal positions for installing new
EVSE stations by maximizing operator profit, user comfort
or a weighted sum of the two. The model has been tested
on real data from a public infrastructure platform and can be
useful as a decision tool for utility providers and city planners.
Future work concerns a scalable approach for automated
parametrisation and evaluation, with programmatic access to
heterogeneous data sources.
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