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Abstract — Accurate estimation of occupancy levels in res-
idential and commercial buildings has become a key feature
of advanced building automation systems. This allows the
control system to adjust its setpoints to account for current
and predicted occupancy in optimizing energy use while
avoiding under-conditioning and over-conditioning of indoor
spaces. We present the implementation and evaluation of a
building occupancy classification system that can potentially
improve energy management strategies in smart buildings
through occupant-adaptive control. The system uses indirect
sensing of ambient conditions such as temperature and
humidity variations and carbon dioxide levels to provide
a relative estimate of the occupancy ratio in the form of
low, medium, high and zero occupancy. This serves a mean
to preserve occupant privacy i.e. by not using cameras and
image processing, and avoiding large hardware and instal-
lation costs through direct measurements with specialised
occupancy sensors or people counters. Our system is tested
on combinations of four different publicly available datasets
with accuracy metrics ranging from 87% up to 100% in the
most favourable cases.
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I. INTRODUCTION

In the developed world buildings consume almost 40%
of the primary energy resources and the tendency is in-
creasing given continuing urbanization. Buildings, build-
ing clusters and neighborhoods are also becoming key
players in consumer-side energy management schemes for
future smart grids. As the largest energy consumption
factor, the Heating, Ventilation and Air Conditioning
(HVAC) subsystem needs to balance personalised thermal
comfort of the occupants as end-users with the energy
consumption and costs on behalf of the building owner or
operator. This balance can be achieved more effectively by
knowing in real time and having the ability to predict fu-
ture occupancy levels. Importance of building occupancy
detection and accurate predictions is thus increasing in
localized energy control of HVAC as well as for intelligent
lighting as secondary energy saving source.

This work has been partially supported by the University ”Po-
litehnica” of Bucharest through the project ”Engineer in Europe”, ME
no. 140/GP/19.04.2021.

Indoor occupancy [1] can be measured directly through
cameras, people counters, access logs and user input, or
estimated indirectly through existing ambient sensors for
indoor conditions, from passive presence detectors as well
as from activity patterns derived from appliance usage
and electrical energy consumption. Indirect methods have
the advantage that they require no dedicated system for
detecting occupancy which saves hardware, installation
and maintenance costs, while demanding large quality
labeled datasets and computing resources for training
robust models.

Given the increased data collection, storage and pro-
cessing resources available at the building automation
system (BAS) level, computational intelligence algorithms
can be apply to the large amounts of collected data [2].
This results in data-driven occupancy models as well
as in reliable forecasts that can incorporate contextual
information such as seasonality factors, work schedules,
dominant space usage. Conventional models based on
machine learning techniques as well as new deep learning
architectures are currently being deployed and compared.

Main contributions of the paper are argued to be as
follows:

• Description of a methodology based on computa-
tional intelligence for building occupancy estimation
using indirect and ambient sensor readings, with
application to building energy management;

• Implementation and evaluation of a convolutional
neural network classifier using data from five pub-
licly available heterogeneous datasets.

The rest of the paper is structured as follows. Section
II presents a detailed review of current approaches in
the field of indirect occupancy sensing and estimation
using intelligent techniques. Section III describes in depth
our methodology including the description of the datasets
used for training and data preprocessing. The results in
Section IV highlight implementation aspects and the main
accuracy metrics for testing our approach. Section V
concludes the paper with the main lessons learned and
potential for deployment on a dedicated embedded system
for online inference.



II. RELATED WORK

Multiple applications for indoor occupancy detection
rely on Passive Infrared (PIR) detectors which are mainly
used in security and automated lighting control systems
[3]. One important drawback is that such sensors cannot
detect still persons. Also detection can be unreliable
over short time spans which introduces delays in the
processing and update of the occupancy, especially in
the case of large occupancy variations over short periods
[4]. An alternative system is described by [5] where
an 8x8 thermopile sensor matrix is used to detect heat
fingerprints of building users, this offers better accuracy
and robustness to noise while preserving privacy. However
the requirement for additional hardware and calibration of
the system for particular rooms or buildings remains [6].

An improved alternative consists of data collection
from ambient sensors such as: temperature, humidity, air
quality/gas, carbon dioxide, light, barometric pressure, to
infer occupancy. For this type of data many studies have
been carried out which consist of the application of com-
putational intelligence and machine learning algorithms
[7] such as: Hidden Markov Models (HMM), Support
Vector Machines (SVM), Extreme Learning Machines
(ELM), Linear Discriminant Analysis (LDA), Classifica-
tion and Regression Trees (CART), Random Forests (RF)
and Artificial Neural Networks (ANN) [8]. In one applica-
tion of HMM [3], the reported average model accuracy is
around 73%, obtained after an extensive testing on a real
building with a multi-node sensor network and by using
cameras to collect the ground truth information needed
to label the training examples. Superior accuracy values,
between 95%−99% are achieved using LDA, CART and
RF in [7] based on sensor readings from light, humidity
and carbon dioxide sensors.

An alternative approach is presented by [9] where the
network infrastructure, MAC and IP addresses of the PC
users are monitored alongside the information regarding
keyboard and mouse usage. The reported accuracy in
estimating occupancy from this data is 80% at the whole
building level, with the main limitation being that the
applicability is limited only to occupants that use a PC to
carry out their work related tasks.

All the studies listed so far leverage algorithms that
handle individual training examples for learning data-
driven models of occupancy such as Bayesian networks
in [10] and [11]. Newer neural network structures such
as recurrent neural networks (RNN) and long short-term
memory networks (LSTM) have the ability to operate on
input sequences of varying sizes e.g. the carbon dioxide
variation over the last five minutes, thereby learning
fine grained dependencies in the input sensor data. This
compares favourably to averaged values used for discrete
valued datasets. Another feature that we focus on ex-
ploiting is incorporating data from different heterogenous
data sources in a single approach which should lead to

improved robustness of the classifier.
A summary of related work with the main identified

approaches is presented in Table I.

III. METHODOLOGY

The main goal of our application is to output the occu-
pancy level in a building as a discrete class label based on
various indirect measurement from ambient sensors and
contextual information. The developed algorithm provides
four probability scores, associated to four output classes:
empty (E), low (L), medium (M), and high (H). Main
stages in the development include the following:

• Collecting raw sensor reading from sensors, such as:
ambient temperature, light, carbon dioxide detectors.
In the current study we rely on previously docu-
mented and provided heterogeneous datasets from
[15] and [7];

• Data preprocessing and reshaping into adequate input
sequences for the neural network input layer compat-
ibility;

• Dividing the processed dataset into training, valida-
tion and testing segments;

• Neural network training and output of the probability
values associated to each occupancy class/category.

A. Datasets Descriptions

Raw data is provided as a list of vectors, with each
vector containing multiple sensor readings and the oc-
cupancy level at the end as training and testing label
as: [sensor1, sensor2, sensor3, occupancy] or [sensor1,
sensor2, occupancy], depending on the number of sensors
used. The datasets that we use are described next:

• Dataset collected in the living room of a house
(home), which includes readings from three ambient
sensors: temperature, humidity, pressure [15];

• Dataset collected in a fitness hall (gym) for seven
non-consecutive days. It provides readings from tem-
perature, humidity and pressure sensors [15];

• Dataset collected in an office (datatest) for three con-
secutive days. It provides readings from temperature,
humidity, light and carbon dioxide sensors [7];

• Dataset collected in an office (datatest2) for eight
consecutive days. It provides readings from temper-
ature, humidity, light and carbon dioxide sensors [7].

Data is reported every second for home and gym
datasets and every minute for datatest and datatest2.
For the latter two datasets, combinations of two and
three sensors were used from the available readings.
One limitation is that these datasets only report binary
occupancy values, that is if the room is occupied or not,
which in our case and in order to bridge this difference
is rescaled as empty and medium occupancy. Finally, we
additionally define a fifth dataset through the combination
of the home and gym datasets as global model and run
our sequence model on this dataset as well.



Table I. SUMMARY OF REFERENCE APPROACHES FOR OCCUPANCY ESTIMATION

Algorithm Type Sensors Used Accuracy Reference
RBF Neural Network Light, sound, Reed switches, CO2, Temper-

ature, PIR
63.23%− 66.43% [12]

Support Vector Machines, K-Nearest Neigh-
bors (KNN), Thresholding

Electrical energy usage 59%− 90% [13]

Artificial Neural Networks Temperature, PIR, CO2, sound, computer
temperature, relative humidity (RH)

70.4%− 72.3% [14]

RF, CART, LDA Temperature, humidity, light, CO2, relative
humidity

95.5%− 98.7% [7]

B. Data Processing

The first step in processing the data is assembling
the measurement sequences that are used by the neural
network input layer. For this, 10 second steps have
been chosen for the home and gym datasets and 60
seconds steps have been chosen for the datatest and
datatest2 sets. For the sequence size a value of 50 has
been experimentally chosen as an adequate parameter,
resulting in overlapping input examples for each step.
In the case of shorter sequences, the padding technique
is used to complete sequences which are partial given
larger distances between consecutive measurements. For
the minimum sequence size, this is computed as 0.75 of
the maximum sequence size. When assigning the labels of
the individual examples to the newly formed measurement
sequences we consider either the dominant occupancy
value for all examples in the sequence through majority
voting or a suitable value from the end of the sequence.

A second step in the data processing for the training
procedure consists of balancing the datasets in order to
mitigate the bias effect of the classifier when being ex-
posed to dominant class examples in the training data. A
balancing function has been implemented which computes
the minimum value among the number of examples in
each class label and reduces the dominant class size in a
ration of 4− 8 times the size of the smallest class.

A summary of the properties of the datasets after
processing is listed in Table 2.

C. Network Architecture

We use a convolutional neural network (CNN) architec-
ture to estimate the class probabilities based on the labeled
dataset presented in the previous subsection. CNN has
been originally developed for 2D image data but has been
shown recently to work well on 1D time series data such
as scalar sensor readings or energy measurements [16]
with very good performance. The architecture includes the
following layers: batch normalization layer, two Conv2D
convolutional layers, two MaxPool2D maximum pooling
layers with batch normalization after each convolutional
layer, two fully connected layers with 32 and 4 neurons,
where the last output layer computes the class probabili-
ties associated to each occupancy category. The network
architecture is illustrated in Figure 1.

Figure 1. CNN Architecture for Occupancy Classification

The role of batch normalization layer is to translate
the individual sensor readings on a comparable scale
as to avoid the algorithm to overweight higher absolute
values e.g. pressure is reported into thousands of milibars
while the temperature value is reported as tens of degrees
Celsius. The convolution product on a two dimensional
table of values is computed as:

G(x, y) = ω ∗ F (x, y) =
ki∑

δx=−ki

kj∑
δy=−kj

ω(δx, δy)·

F (x+ δx, y + δy) (1)

where ω is the convolution kernel. The max pooling
layer computes the maximum value within each resulting
patch of the feature map.

To speed up the network training the batch size pa-
rameter is set at 64. Adam optimization is used for com-
putationally efficient minimization of the loss function
during the training procedure. The learning rate is set
progressively lower with the values [0.01, 0.001, 0.0001]
to improve convergence with various epoch numbers
between [30, 20, 10]. To compare the network output over
various datasets and parameter sets a dedicated function
has been created that creates a tabular file including the
real occupancy, predicted occupancy and the timestamp
of each sequence in the dataset alongside the overall
accuracy of the trained model.



Table II. DATASET PROPRETIES

Dataset No. Examples Timestep [s] Sequences Pre-
Balancing

Sequences Post-
Balancing

Sequences per Class

home 295823 10 29015 10843 E:3091, L:3782, M:3340, H:630
gym 10129 10 586 586 E:0, L:150, M:294, H:142

datatest (T,H,CO2) 2665 60 2614 2614 E:1678, L:0, M:936, H:0
datatest2 (T,H,lux) 9752 60 9701 9701 E:7701, L:0, M:2000, H:0

datatest2 (T,H,CO2) 9752 60 9701 9701 E:7701, L:0, M:2000, H:0
home + gym 305952 10 29605 12855 E:3889, L:4471, M:3723, H:772

IV. RESULTS

For the practical evaluation, the algorithms are imple-
mented using the Python programming language with the
Tensorflow - as higher level framework for specifying
neural network architectures and training, os - useful
functions for operating system interactions, json and csv
- for structured data parsing and reformatting, libraries.
Visualization of network architecture is performed using
Netron and Tensorboard tools. Network training is carried
out by randomly splitting the input datasets into training
(60%), validation (20%) and testing (20%) subsets. A
random seed parameter is defined in order to control for
the train-validation-test split for all the experiments. For
the loss function the categorical crossentropy is typically
used in such problems and is expressed as:

Loss = −
outputs∑
i=1

yi · log(ŷi) (2)

where ŷi is the i-th value of the array of potential
classes and yi is the respective target value. Multi-class
accuracy is computed as the number of the total correct
classifications in each of the bins, over the total number of
classifications, correct and incorrect. Figures 2-4 present
the evolution of the accuracy over the multiple training
and validation epochs for the home, datatest2 and home
+ gym datasets.

1.000 

0.975 

0.950 

0.925 

u 

a o.9oo
u 

0.875 

0.850 

0.825 

0.800 

0 

Training accuracy 

Validation accuracy 

10 20 30 

Epochs 

40 50 

Figure 2. Training and Validation Accuracy: home Dataset
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Figure 3. Training and Validation Accuracy: datatest2 Dataset
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Figure 4. Training and Validation Accuracy: home + gym
Dataset

We report next the accuracy results when the model
is used for classification on the testing subsets of each
dataset. One observation is that the decrease in the re-
ported testing accuracy is limited when using two instead
of three sensors inputs in the model. Testing on both
individual and combined datasets yields a more robust
classification model as is the case with the home, gym and
home + gym datasets. The loss function implemented is



the sparse variant for computational efficiency.

Table III. CLASSIFICATION TESTING RESULTS

Dataset No. Sensors Accuracy [%] Loss
home 3 0.9 0.5
gym 3 1 0

home + gym 3 0.93 0.5
datatest 3 0.99 0.01

datatest2 3 0.99 0.02
home 2 0.87 1.16

home + gym 2 0.87 1.33
Datatest 2 0.99 0.01
Datatest2 2 0.99 0.05

An example for the obtained multi-class classifica-
tion confusion matrix, for the home dataset with three
inputs/sensors, is listed in Figure 5. The class ids 1-
4 are associated to the empty, low, medium and high
categories respectively. The associated accuracy metrics
are computed row- and column- wise as well as globally.
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Figure 5. Confusion Matrix for home Dataset with Three
Inputs: Accuracy = 0.9

The disk size of the trained model is 39.6 kB for
the model with real-typed float weights and 15.4 kB
for a quantized model with integer weights for future
portability on efficient low-power embedded platforms.

V. CONCLUSION

We have presented an approach to classify building oc-
cupancy based on indirect readings from ambient sensors.
A Convolutional Neural Network (CNN) has been de-
signed and evaluated on publicly available heterogeneous
datasets yielding an approach with increased robustness
to variations in the input data. The sequence modelling
technique offers the ability to quantify the dependency

between the variations of the ambient parameters such
as temperature, humidity, light and carbon dioxide on
the reported occupancy levels. For future development,
we aim to validate the results through a small scale
laboratory data collection which allows more control over
the generative data process in real conditions. Porting
a compressed version of the algorithm to embedded
development boards, such as Raspberry Pi class devices,
for online inference is also foreseen.
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[5] C. Chiţu, G. Stamatescu, I. Stamatescu, and V. Sgârciu, “Wireless
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