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Abstract — Dense distributed sensor systems deployed to
monitor and control the built environment open up wide
application areas for improving the quality of life through
smart spaces. By implementing these systems in residential
or commercial buildings, more efficient, pervasive, real-time
and finally more robust decision support is achieved. As
one of the key tasks, high accuracy occupancy detection
and estimation within buildings offers the potential to im-
prove HVAC utilization while reducing maintenance needs,
enhancing energy savings for building operators as well as a
more suitable thermal comfort for occupants. In this context
the main contribution of the paper consists of an assessment
of supervised machine learning techniques namely random
forests and extreme machine learning neural networks for
indirect occupancy profile estimation. The methods are
applied on a benchmarking dataset of indoor carbon dioxide
measurements and ventilation damper positions as collected
from the building information system. The impact of data
preprocessing through filtering and smoothing as well as
hardware constraints and cloud distributed processing for
algorithm deployment are also discussed. We highlight key
challenges and discuss how the learned models can be
integrated for online operation to improve energy efficiency.

Keywords — statistical learning; occupancy estimation;
sensor data processing; smart buildings

I. INTRODUCTION

Increasing constraints on the energy efficiency of build-
ings, including the ones imposed through environmental
regulations in Europe, has led to more advanced control
systems to optimise building operation. The buildings are
thus gradually transformed into smart spaces with new
generation of networked sensors and actuators, multi-
modal user interfaces and analytics, alerting and reporting
for the owner or operator. These are usually integrated
under the umbrella of next generation Building Manage-
ment Systems (BMS). Interdisciplinary research groups
have started to collaborate more intense within this field
through teams of data scientists, civil engineers, system
engineers, facility managers, for a better understanding
of the occupant patterns, which can be recognized as one
critical driving element of overall energy consumption.
The example of interest for this contribution is related
to the indoor ventilation requirements, that is the need
to satisfy the need of reducing CO2 levels by gradually

replacing indoor air with fresh one in the economizer with
minimal energy waste [1].

In terms of sensor data processing, addressing data
fusion techniques, inference learning, or historical data
analysis for thousands of non-residential buildings [2],
[3], [4] current open source statistical learning libraries
can be used. Computing aspects are critical for such al-
gorithms in on-line operation through parallel computing
or distributed nodes using cloud platforms [5], [6].

The challenges of handling large quantities of hetero-
geneous building data concern noisy, structured, semi-
structured and unstructured data and the ability to run the
algorithms on big data platforms on cloud. Measurements
collected by the heating, ventilation and air conditioning
systems (HVAC) can subsequently be used to indirectly
estimate room usage with the purpose of substituting
dedicated additional sensors for people counting, thereby
significantly reducing monitoring system cost. We thus
present a use case of estimating occupancy patterns in
a benchmark non-residential building, using already de-
ployed sensors [7].

Our contributions presented in this paper are argued to
be:

• implementation and benchmarking of two machine
learning techniques, namely Random Forest and Ex-
treme Learning Machine, on real data collected in
a reference academic building for occupancy level
estimation, including a data preprocessing phase;

• assessment of technical aspects regarding algorithm
implementation for local machine and for cloud
instances using Spark technology as analytics engine
for large-scale data processing and discussion of
potential real world validation.

The rest of the paper is organized as follows. Section II
presents a summary of relevant works applied for build-
ings data. Section III focuses on the methods to describe
from a statistical point of view the mathematical modeling
and the data processing frameworks. The presentation
and discussion of the experimental results is included
in Section IV, emphasizing the importance and existing
limitations of the work within the context of smart spaces.
The paper concludes with future work in Section V.



II. RELATED WORK

Occupancy detection and forecasting in non-residential
and office buildings is enabled by a large range of physical
sensor systems [8] where the information is extracted with
statistical [9] and machine learning techniques [10], [11].
This has led to enhancing the accuracy of estimation and
prediction for occupancy related tasks. Through a data fu-
sion approach by consideration of sources already present
in the building infrastructure, indirect estimation of room
occupancy levels can be achieved. This can subsequently
be integrated into a predictive control algorithm at the
HVAC level for occupant aware optimised control.

A research of user behavior using several classification
techniques including Random Forests (RF) was presented
by [12]. This stresses the importance or proper feature
selection and model structure for high accuracy in the
problem of user detection. Though the topic is intensively
studied and several machine learning algorithms are im-
plemented and well exploited, one salient limitation is
that the occupancy is binary, in terms of occupied or
unoccupied rooms. It is very important to know a good
approximation of the total person count for minimizing
the electricity consumption of the HVAC system as it
is presented in [13], while accounting for the ventilation
requirements and net-energy contribution to the space of
each user.

Prediction of the occupant pattern in buildings is mod-
eled in [14] using Extreme Learning Machine neural
networks (ELM) for CO2 data. The authors present a
variation of ELM algorithms with high enhancement of
occupancy detection for a zone with 24 occupants, but
testing only for one zone. The ELM technique is exploited
in several other studies as in [15] where a reference
discussion and implementation are carried out for efficient
implementation on low resource edge devices while argu-
ing a 3x speed-up in a particular context. [16] introduce
a two-stage approach for occupancy detection learning
algorithms using ELM for the first stage of fast non-linear
classification followed by inserting the results in a Support
Vector Machine (SVM) algorithm for final outcomes. In
[17] the authors focus on feature selection to improve
the effectiveness of ELM for occupancy estimation. This
relies on a filter component and a wrapper component
which use raw measurements of carbon dioxide, relative
humidity (RH), temperature and ambient air pressure. The
method provides good results for indoor human detection
accuracy, from 75-85% up to 90-95%.

The indirect room usage estimation based on carbon
dioxide sensor measurements, has thus gathered inten-
sively researcher attention in the last decade [18], being
still an actual interesting topic [19] because of its high po-
tential to improve energy efficiency and occupant comfort
in modern building automation applications.

III. METHODS

In this section, we explain the theoretical models used
to estimate occupancy based on CO2 concentration levels
and duct airflow provided in terms of damper openness
while having the ground truth in terms of number of
occupants.

Often it is argued that CO2 concentration levels are
not accurate, being affected by error accumulation. To
address this aspect, especially that the data providers [20]
suggest addressing known issues with CO2 concentration
levels as drifts and offsets, we applied 2 different steps
for this measurement in order to pre-process it: CO2

data smoothing technique presented in [14] and a Kalman
filter.

To deal with the offsets induced by the air move-
ment of the persons getting closer to the sensors and
measurements noise represented as spikes, we estimate
the current value using a smoothing technique first. Let
us consider our measurements of concentration levels as
a vector c = [c1, c2, ..., cn]

T . Then, the smoothed data
denoted here cs can be found, as presented in [14], by
minimizing the function:

J(cs) = ||c− cs||22 + λ||∇cs||22 (1)

where ∇ is the gradient, ||.||22 is the square of Norm 2
(Euclidian norm) and λ is a weighting factor. A larger
value of λ leads to increased smoothing effect. After
solving the problem according to the same source, the
cs is implemented with the formula:

cs = (I + λ)−1c (2)

In addition, we used a Kalman filter to compare the
previous values of the concentration levels. This type of
filter is suitable for real time problems, being light on
memory and very fast while dealing effectively with the
uncertainty induced by noisy sensor readings.

The problem formulation states that x ∈ Rn is the
signal value to be estimated of a discrete control process.
The signal is governed by the equation:

xk = Axk−1 +Buk−1 + wk (3)

and the measurement is given by z ∈ Rm:

zk = Hxk + vk (4)

with wk and vk random variables and representing the
process noise and the measurement noise. This could
be interpreted that every value of the signal is a linear
combination of its previous value, a control signal and
process noise. Equation (4) says that a measurement value
is represented as a linear combination of the signal value
and measurement noise. For A = 1, the state does not
change from step to step, and no control input meaning
u = 0, replacing in (3), we have:

xk = xk−1 + wk (5)



and if we consider a measurement z ∈ R1 and H = 1, as
the signal directly is measured with the noisy measure-
ment, in (4):

zk = xk + vk (6)

In many of the signal filtering situations, the variables
A, B and H are not matrices, but numeric values and
for simplified models, assume they do not change from
one state to another, remaining constant. Following the
mathematical explanation of the Kalman model from [21],
we will use the next equations, considered at the state k:

Kk =
P−
k

P−
k +R

(7)

x̂k = x̂−k +Kk(zk − x̂−k ) (8)

Pk = (1−Kk)P
−
k (9)

with x̂k the a priori estimate, Kk the Kalman Gain, R the
covariance of the observation noise and P−

k the a priori
estimate covariance. These are known as the measurement
correction equations. They are coupled with what is called
the time update equations, where Q is the covariance of
the process noise:

x̂−k = x̂k−1 (10)

P−
k = Pk−1 +Q (11)

The goal is to find the x̂k which is the estimate of x.
The current estimates will be input for the next states,
this meaning that the initial value of P is needed (P0),
and in practice it is assigned, as well as x0.

Once having the data pre-processed with these filters,
we input them into a processing pipeline using a Random
Forest (RF) model. Let us consider the input dataset
X = {x1, x2, ..., xn} (features) and an output dataset
Y = {y1, y2, ..., yn} (labels). The RF model assumes
a training of a classification tree Tb on a sample with
replacement dataset from Xb and Yb with b = {1, ..., B}.
The output of the algorithm is the ensemble of trees
{Tb}B1 . For the classification task, the prediction for a
new unseen sample, x, is described by:

T̂B
rf (x) =MajorityV ote{T̂b(x)}B1 (12)

The split node within the tree is chosen using the Gini
impurity given by:

1−
c∑

i=1

p(i)2 (13)

where p(i) is the probability of a certain classification
per dataset. In other words, it tells us how often, by
choosing a random sample, it would be incorrectly labeled
considering the distribution of labels and doing a random
labeling.

In parallel of this technique, we used Extreme Learning
Machine for tackle the same problem. This type of feed-
forward neural network is designed usually with one non-
linear hidden layer of neurons. The number of occupants
is given by:

L∑
i=1

= βih(w
T
i xk + bi) (14)

where wi ∈ Rn represent the random generated weights
from the input layer to the ith hidden neuron, bi is the
random bias of the input for the ith hidden neuron, h(.)
is called the activation function and β = [β1, β2, ..., βL]

T

contains the weights from the hidden layer to output
and is found by solving a least square problem. Because
we address the estimation problem for city-scale energy
footprint estimation, we approach an implementation of
ELM optimized for Big Data applications as presented
in [15] to reduce the implementation complexity. Each
parameter w for the input to hidden layer and from the
hidden layer to the output layer is mapped using the
transformation:

wq = round(w(−1 + 2nb − 1) (15)

where nb is the number of bits for the neurons in the
hidden layer.

IV. RESULTS

The data sources are presented in [20], summing up
a number of 21600 records per room, with a total of 4
rooms, for 15 days collection period across March and
April 2017, at 1 minute frequency, from an academic
space (study zones and lecture rooms). We aim to es-
timate the occupancy in each room based on the CO2

concentration level and air flow given in terms of damper
openness. This is important because these data sources are
usually present in any building and once the occupancy
level is estimated, it could be included in a control strategy
to condition the room for the actual necessity and not
for full occupancy as it happens in BMS. In the same
time, this trade off between user comfort and energy
savings is compliant with the European guidelines for
ventilation requirements in buildings, with respect to CO2

concentration.
Occupancy at maximum level recorded for each room

is presented in Table I. The first room and the last one
are dedicated to teaching and the second and third rooms
are used as study zones.

Table I. ROOM OCCUPANCY

Room1 Room2 Room3 Room4
Max. Occupants: 67 28 35 39

For the CO2 smoothing technique that we presented
in the previous section, we used λ = −0.5, because this
value was suitable to our dataset, after trying other ranges.
The implementation that we did for Kalman filter for the



same variable, based on the equations (7), (8) and (9) is
the following:

Algorithm 1 Kalman filter algorithm for CO2 data
for i← 1 to length(c) do
k ← p

p+r

x← x+ k(c(i)− x)
p ← p+ q
current estimate ← x

end for

As we mentioned previously, x0 should be initialized.
For every room, we set this value to the first value
recorded on the corresponding dataset. The other param-
eters were set to: p0 = 0.1, q = 1, r = 50. Because the
feature vectors, here the CO2 concentration level and the
air flow, are less numerous in diversity, we designed the
smoothing and filtering techniques as soft filters, being
relatively very close to the real data. This is justified
by the motivation of staying close to the ground truth,
to diminish the chances of misclassification. This was
done based on data analysis: we noticed that at the
concentration level of 411 ppm (parts per million) one
person was in the room according to the ground truth;
at the concentration level of 464 ppm, the records have
again one person assigned. But, continuing the inspection,
we found that for the value of 626 ppm we could have
again one person in the room and at 629 ppm 2 persons.
So, we could not drift with the filtering too much from
the initial value. In Figure 1 are represented the first 100
values for the dataset corresponding to room 1, for a
zoomed in image. We have now a new dataset which
will name ’smooth’ and it is very similar to the inital
one, and a second new dataset which will call ’kalman’
and represents a more dramatic filter comparing with
’smooth’.

Figure 1. CO2 filters comparison
In Table II we summarize the performance of the RF

model for each room, where we refer to each dataset con-
taining the CO2 pre-processed as we mentioned above,
and by ’Rn’ we mean Room number n, with n = 1, 2, 3, 4.
RMSE stands for root mean square error; the split was
80% for training data, with a random state of 42 and
100 trees in the forest. From this table we see that the

Table II. RANDOM FOREST RMSE

RMSE
initial data ’smooth’ ’kalman’

R1: 8.39 8.56 10.44
R2: 3.06 3.12 2.75
R3: 3.36 3.38 3.39
R4: 4.08 3.82 4.2

Table III. RANDOM FOREST TRAINING TIME

Time[sec]
initial data ’smooth’ ’kalman’

R1: 0.16 0.17 0.19
R2: 0.06 0.05 0.07
R3: 0.09 0.11 0.12
R4: 0.12 0.15 0.22

smoothed dataset was not performing better than the
initial one, though was very similar, excepting one case,
for the room 4. The same conclusion could be draw for
the dataset obtained with Kalman filter. This could be
interpreted that the initial dataset was clean since it is
a relatively recent collected, the CO2 sensors were well
calibrated and the accumulated error was not impacting
that much the performance of the classification model. On
the other hand, we could not be sure about this hypothesis,
and assume that the less performing behavior could be
associated with a poor feature data vector. Our features
were the concentration level for CO2 and the airflow
given by the damper position. The highest value for
RMSE is accounted for the Room1, but this is the room
with the largest maximum number of occupants (67) and
highest occupancy every daily as could be observed from
the Figure 2. The associated training time is presented in
Table III and could be seen that again, the initial dataset
had the best performance, here the least training time, in
3 out of 4 cases. In Figure 3 is a plot of the first 5 hours
of training data and predicted occupancy values for room
1.

Figure 2. Occupancy distribution for room R1, R2, R3, R4

The RF model was implemented in Python, on a local
machine. Despite the fact that at the moment we do
not have access to large amount of dataset, the research
community is preparing to assist to a city scale image
of building performance, in terms of occupancy patterns,
usage, electricity consumption which are all related and
correlated with transportation and other urban services.
For such platform to support these objectives, we tested



Figure 3. Occupancy distribution for room R1 using RF
Table IV. ELM ACCURACY FOR ROOM1 DATASET

Accuracy with tanh
initial data ’smooth’ ’kalman’

69.17% 69.08% 67.95%
Accuracy with abs

initial data ’smooth’ ’kalman’
68.11% 68.11% 67.92%

the RF model on a Spark machine, in cloud, provided
by Databricks, using Pyspark, the Spark Python API
that exposes the Spark model to Python programming
language. We used Spark 2.4.0 version, 6GB memory
and 1 Driver. The implementation is using the MLlib
which is the Apache Spark machine learning library. The
advantages of using Spark are multiple from using tens
of data type sources to running of different environments
such as EC2, Hadoop etc. For the first room dataset, using
RF on Spark, we obtained an accuracy of 67.65%, with
a training time of 4.94 seconds, a higher time than in the
case when the model ran on the local machine. It is known
that big data engines return a poor running time for small
datasets comparing with the time needed for processing
GB of data.

A second model is tested for the same data as the RF
model, ELM with 2 types of activation functions: abs -
absolute valued and tanh - hyperbolic tangent function
given by the equation (15). We tried also the ReLU
(Rectfied Liniar Unit), multi-quadratic and sigmoid, but
these 2 presented the best results.

tanh(x) =
ex − e−x

ex + e−x
(16)

In Table IV and Table V are summarized these results
for the first room, as this one presented the highest
RMSE when evaluating the RF model, i.e. the worst-case
scenario. Here, the accuracy is given by the sum of true
positive and true negative cases divided by the total values
representing how often is the classifier correct. We keep
the previous notations for ’smooth’ and ’Kalman’. For this
model described in the previous section, the parameters
are set to: 2000 number of neurons, coefficient c is 0.1,
and nb for input is 4 and for output is set to 0.

What is to be noticed here is that the ELM model is

Table V. ELM TRAINING TIME

Training time[s] with tanh
initial data ’smooth’ ’kalman’

2.14 1.85 1.99
Training time[s] with abs

initial data ’smooth’ ’kalman’
1.95 1.82 1.98

more time demanding for the training phase comparing
to the RF model, aspect specific to the neural networks.
In this section we have explored and assessed the RF
and ELM models as occupancy counters, analyzing the
accuracy of each one and preparing the path for following
up with more data to test on a big data platform.

V. CONCLUSION

In this study we have investigated occupancy esti-
mator’s performance in terms of accuracy and training
time for nonresidential spaces, such as lecture rooms.
We carried out a comparative assessment of two learning
models, Random Forest and Extreme Learning Machine,
for datasets from 4 rooms, considering measurements
that usually are collected by the HVAC systems. With
application on several important services for smart cities,
building occupancy level in real time would potentially
demand for big data processing frameworks, as already
researchers have started to consider tens and hundreds of
buildings to be analyzed [4]. In this sense, we tested Spark
framework for Random Forest model, as an example to
be followed up with massive datasets. A limitation of this
study is that the algorithms were implemented without
being tested on a real building, but this work could be
followed by other researchers to extend the horizon of
it. The highest importance or this research is that we
forayed into data already present in buildings usually,
which means that it is less pervasive and cost effective for
being explored in many buildings. We believe that with
an additional feature - the room temperature-, the models
would have a very high accuracy in detection, but even
as it is, included in a predictive control strategy, would
enable more efficient ways to perform HVAC control.
We found that by addressing CO2 filtering methods the
accuracy did not improve which could be explained by the
fact that a good sensor calibration is reducing the offsets,
so technological advancements decreased the need of pre-
processing data. Because of the actual uncertainty of the
estimation due to poor dataset in terms of features, this
type of usage detection is recommended for large office
spaces or academic lecture rooms where many persons are
using the space and a band of few persons in detection
could be added to reduce the estimation error and still
save energy by not conditioning at maximum level. This
is an initial step to understand patterns usage and unlock
energy savings in the building sector with a good balance
for user thermal comfort.
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