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Abstract—Low voltage Direct Current (LVDC) systems repre-
sent an emerging alternative for efficient usage and local energy
distribution. Such systems are able to integrate renewable energy
sources, energy storage and DC-native and AC loads using a
common DC bus and multiple voltage levels. We present an
end-to-end implementation of a prediction framework for LVDC
microgrids loads in a residential scenario using a data-driven
approach. Given the limited availability of public DC microgrid
datasets, a data augmentation pipeline is first proposed and
deployed using open source software libraries. Results provide a
comparative analysis between the SARIMA and Prophet load
forecasting (regression) models using standardised evaluation
metrics.

Index Terms—dc microgrids, load forecasting, data augmenta-
tion, sarima, prophet.

I. INTRODUCTION

The deployment of LVDC residential and industrial mi-
crogrids is currently emerging as a practical solution for
efficient and secure energy usage [1]. Artificial intelligence
(AI) and machine learning (ML) techniques applied to DC
energy systems can improve system resilience and real-time
control towards efficient and reliable operation [2]. Forecasting
in DC microgrids poses different challenges compared to AC
systems. The protection mechanisms in DC grids require faster
and more precise responses, making real-time forecasting criti-
cal. Moreover, consumption patterns are different, transmission
losses are lower, and the lack of standardized datasets for DC
systems makes the forecasting task even more complex for
developing accurate prediction models.

In this context the main contribution of the article is
considered to be an applied artificial intelligence approach
to mitigate public dataset scarcity for DC microgrids using
data augmentation together with comparative evaluation of
time series load forecasting models for such task. The data
augmentation framework was specifically designed for DC
microgrids, making the synthetic data more useful and closer
to real-word conditions.
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The rest of the paper is structured as follows. Section II
briefly discusses related work with regard to deep learning
methods applied for DC microgrid load forecasting. In Sec-
tion III we present the main elements of a DC microgrid
architecture, together with the methodology used for data
augmentation and load forecasting and associated dataset.
Results are presented in comparative manner in Section IV
using standardised metrics. Section V concludes the paper with
outlook on future work.

II. RELATED WORK

This section presents previous research focused on creating
accurate models for load forecasting in DC microgrids. Load
forecasting estimates the amount of electricity needed to
satisfy future demand and is thus a key component in efficient
energy management [3].

The paper [4] presents a recurrent neural network archi-
tecture, the LSTM method, for load forecasting. A hardware-
in-the-loop approach is used, which integrates a 255W solar
array (combining polycrystalline and monocrystalline panels),
a 12V lead-acid battery bank, and IoT enabled sensors (LDR,
DHT11, voltage/current sensors) with a NODEMCU ESP8266
for real-time data acquisition. The prediction model realized
to forecast energy consumption in DC microgrid powered by
solar panels and batteries achieved an accuracy of about 95%.
However, this performance can be affected by features such
as weather data and others.

The autors in [5] presented an LSTM-based forecasting
model for predicting load demand and power generation in DC
microgrids, while simultaneously addressing the problem of
optimal storage system management (ESS) through consensus-
based distributed control. The proposed solution integrates
a distributed extended Kalman Filter (DEKF) algorithm for
efficient training of LSTM models. This approach achieved
a voltage deviation below 0.1V and increased the microgrid’s
autonomous operation duration by up to 30% under renewable



energy source (RES) outage conditions. Building upon these
prior approaches, we next describe the specific DC microgrid
configuration used in our study, followed by the proposed
methodology for data augmentation and forecasting.

III. DC MICROGRID

A DC microgrid is a small-scale electricity grid that operates
mainly with direct current (DC) and functions as a localized
and integrated energy system, capable of operating both con-
nected to the national grid and independently (island mode).

At the foundation of a DC microgrid’s arhitecture is the
DC common bus, which interconnects generation sources,
storage systems and energy consumers. Bassically, it manages
the microgrid’s energy. Through this concept, DC microgrids
significantly reduce losses from inefficient conversions (AC-
DC) that occur in traditional AC grids, as they optimize the
energy flow.

The structure of DC microgrid is illustrated in Figure 1. So-
lar panels, wind turbines, small hydro power plants, biomass &
biogas and fuel cells are connected to the DC bus through the
converter. Solar panels are connected to the DC bus through
a DC-DC converter. Wind turbines are connected to the DC
bus through an AC-DC converter. Small hydropower plant
are connected to the DC bus through an AC-DC converter.
Biomass and biogas are connected to the DC bus through
an AC-DC converter. Fuel cells are connected to the DC bus
through an DC-DC converter. In addition to renewable and
conventional sources of power generation, the DC bus is also
connected to the main grid. The connection to the main AC
grid is realized through bidirectional DC-AC converters, which
allow both the import of energy from the grid when local
generation is insufficient and the export of surplus energy to
the main grid.

Energy storage systems and electric vehicles are connected
to the DC bus through bidirectional DC-DC converters, facil-
itating energy transfer in both directions: from the DC bus to
the storage systems and electric vehicles and from the storage
systems and electric vehicles to the DC bus.

DC microgrids enable a multi-level approach to operating
voltages. Within this architecture, in addition to the main
bus, we also have a sub-bus at lower voltages, such as
48V, specifically designed for particular applications such as
telecommunications or electronic devices.

DC microgrids offer numerous advantages, including in-
creased energy efficiency, simplified integration of renewable
energy sources, enhanced reliability and reduced maintenance
costs. The spread and evolution of DC microgrids makes
efficient energy management more and more relevant. This
involves load forecasting (i.e. estimating how much electricity
will be needed to supply future demand) to optimize system
performance [4].

Over time, electricity load forecasting has been approached
in a variety of ways, including statistical modeling, artificial
intelligence and machine learning methodologies. In this paper
we implement and compare the SARIMA [6] and Prophet
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Fig. 1. Structure of a DC microgrid

time-series prediction algorithms for forecasting energy con-
sumption. These algorithms have been implemented on a
synthetically augmented and generated dataset, since currently
large datasets are not readily available at suitable quality
levels.

We chose as a starting point a dataset monitoring a resi-
dential DC microgrid system for 5 households, each equipped
with photovoltaic panels and individual batteries. The dataset
tracks the interaction between consumption, solar production
and energy storage over a full day, measured at 15-minute
intervals. The specific DC microgrid architecture described by
the dataset is shown in Figure 2. In order to scale, extend,
and enhance the available samples, synthetic data generation
produces realistic power consumption time series that maintain
the key features of real-world data. This method makes it
possible to get beyond restrictions on the historical data that
is currently accessible and improves the forecasting model
resilience.
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Fig. 2. DC microgrid architecture for the dataset

A. Methodology

Synthetic data generation creates realistic power consump-
tion time series that preserve the essential characteristics of
real-world data while providing the ability to scale, extend,



and augment the available samples. This approach allows to
overcome limitations in available historical data and enhance
the robustness of forecasting models.

The key features of the process are: the extraction of
base patterns, multiscale temporal modeling, and considera-
tion of domain-specific constraints. The following paragraphs
describe each step.

« Extraction of Base

— The system extracts daily consumption patterns from
existing samples

— If limited data is available, patterns are looped to
create full day cycles

— Core temporal features of the original data are pre-
served

o Multi-scale Temporal Modeling

— Implements daily patterns with realistic morning and
evening peaks

— Creates weekly patterns distinguishing weekdays
(higher consumption) from weekends (approximately
15% reduced consumption)

— Models seasonal effects including yearly temperature
variations and quarterly transitions

o Considering Domain-Specific Constraints

— Enforces power system physics such as PV plant
output being zero at night

— Maintains proper power balance between consump-
tion, generation, and battery storage

— Creates realistic correlations between system com-
ponents

The data generator implements different augmentation tech-
niques that can be applied selectively (Fig. 3): noise addition,
amplitude scaling, seasonal effects and frequency variations.
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Fig. 3. Data augmentation framework

In order to provide new data and enable the model to
learn different variations and enhance generalisation perfor-
mance, noise injection entails introducing random noise to the
original data. The Noise Addition Method creates new data
by supplementing the old data with a predetermined amount
of random noise. In this work, we employed time-varying
Gaussian noise with a dynamic scale ranging from 3% to
7% of the mean power value. The noise intensity follows a
sinusoidal pattern aligned with the time of day, simulating
higher variability during peak consumption hours and lower
variability during off-peak periods. This approach creates more

realistic augmented data by reflecting the natural fluctuations
in measurement precision that occur throughout the day.

The Amplitude Scaling Method applies global consumption
level shifts using a +10% variation. The method simulates day-
to-day variations in overall energy demand maintaining the
relative proportions of peaks and troughs.

The Seasonal Effects Method implements annual cycles
using sinusoidal modulation. The method simulates seasonal
variations in PV generation (higher in summer) and creates
quarterly variations in consumption patterns.

The Frequency Variations Method introduces cyclical com-
ponents at different frequencies. The method simulates appli-
ance cycles, HVAC operation, and other periodic behaviors in
order to create realistic sub-daily variations in consumption
patterns.

The ARIMA model is a mathematical model used for time
series forecasting, based on auto regression (AR), integration
(D and differencing and moving average (MA). It first checks
stationarity and seasonality, then identifies the AR, MA pa-
rameters. Thus the differencing process first takes place to
convert non-stationary data into stationary data and then the
ARIMA (auto-regressive integrated moving average) model is
generated.

The SARIMA (Seasonal auto regressive integrated moving
average) model, also called Box-Jenkins, is similar to the
ARIMA model, except that it is used when the time series
exhibit seasonality. The general form of a SARIMA model is
denoted as follows:

SARIMA(p,d.q) x (P, D, Q) (1)

The model parameters p,d and q represent the non-seasonal
part (p, d and q represent the nonstationary AR order without
seasonal differencing, and the nonstationary MA order, respec-
tively), and P,D,Q and S the seasonal part (P , D, Q and S
correspond to the seasonal AR order, seasonal differencing,
seasonal MA order and seasonal pattern repetition time inter-
val, respectively. [7] Mathematically, it can be expressed in
terms of a composite model as in equation 2:

p(L*) 6,(L) (1 L) (1-L*) g, = Og(L*) 0,(L) &, (2)

where:
o L is the lag operator
o ¢p(L), ®p(L®) - autoregressive polynomials (non-

seasonal and seasonal)
o 94(L), ©¢g(L®) - moving average polynomials (non-
seasonal and seasonal)
e (1 — L)? - non-seasonal differencing component
e (1 —L%)P - seasonal differencing component
e &; - white noise
Prophet is a forecasting model developed by Facebook and
is available in Python and R [8]. It decomposes the dataset
into 3 main components, i.e. trend, seasonality and holidays.
It can be represented as in equation 3:

y(t) = g(t) +s(t) + h(t) + & 3)



where the model parameters g(t), s(t), h(t) are interval linear
curves with automatic change point detection. The seasonality
component is modeled using a Fourier series which provides
a flexible model that captures varying periodic effects [9]:

al 2mnt 2mnt
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where p represents the regular periodicities.

IV. RESULTS
A. Metrics evaluation

Once the forecasting approach and augmented dataset gen-
eration methodology are established, we evaluate the perfor-
mance of the SARIMA and prophet models using standard
metrics. These two methods were chosen because they have the
ability to model seasonality, an important feature in residential
DC microgrid consumption patterns. While many Al-based
methods exist, they require large volumes of training data and
extensive computational resources. In contrast, SARIMA and
Prophet can be trained effectively on limited datasets, offering
a solid balance between interpretability, computational effi-
ciency, and seasonal modeling capability.

Each subplot of Figure 4 represents a version of the data
in which specific augmentation techniques were applied to
increase the availability of the initial training set. The first
subset represents the original data: the x-axis represents time
(with hourly intervals on January 1st) and the y-axis represents
power consumption in kilowatts (kW). The second subplot
repesents the data after the Noise Addition Method was
implemented. In this method random noise is added to the
original signal in order to simulate measurement errors or
sensor fluctuations. The third graph represents data after the
Amplitude Scaling method was implemented while the fourth
represents the input data after the Seasonal Effects method.
The last plot represents the data after the Frequency Variations
Method.
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Fig. 4. Data augmentation results

Using the raw data for one single day has led to the
generation of a one month augmented dataset, with the results
presented in Figure 5 being obtained. The power (blue) curve
is influenced by both PV generation (green) and battery
charging (red). During the day, solar generation helps offset
load, while the battery may charge when excess solar is
available. At night, the absence of PV production and ongoing
battery behavior suggests reliance on stored energy or external
sources. On this data the two proposed energy forecasting
models: SARIMA and Prophet, were implemented.
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Fig. 5. Synthetic data visualization

Figure 6 and Figure 7 reflect the performance of the
SARIMA model — specifically SARIMA (1,0,1) x (0,1,1,96)
and the Prophet model in forecasting power consumption over
the course of a single day (January 30th). The black line
represents the actual power usage values (in kilowatts), while
the blue line corresponds to the predicted values generated by
the SARIMA or the Prophet model. Surrounding the blue line
is a shaded blue region, which illustrates the 95% confidence
interval, giving a visual indication of the uncertainty in the
predictions.

The SARIMA model performs notably well, capturing the
general trends, including both the peaks and troughs in the
power usage. The alignment between the predicted and actual
values suggests that the model is accurately tracking the
temporal patterns in the data. The goodness-of-fit metrics
shown in the upper-left corner provide a quantitative measure
of the model’s performance: Root Mean Square Error (RMSE)
is 0.7905, Mean Absolute Error (MAE) is 0.5832, and the
coefficient of determination (R?) is 0.9230 — indicating that
over 92% of the variance in the actual data is explained by
the model.
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Fig. 6. SARIMA predictions



The Prophet model performs fails in capturing the peaks
and troughs in the power usage. The goodness-of-fit metrics
shown in the upper-left corner provide a quantitative measure
of the model’s performance: Root Mean Square Error (RMSE)
is 0.8886, Mean Absolute Error (MAE) is 0.6253, and the
coefficient of determination (R?) is 0.9027 — indicating that
over 90% of the variance in the actual data is explained by
the model.

RMSE: 0.8886
MAE: 0.6253
RY:0.9027
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Fig. 7. Prophet analysis

The coefficient of determination evaluates the quality of
the actual predictions of regression models, including in the
context of time series prediction. R? is the square of the corre-
lation between the actual and predicted variable. It ranges from
0 to 1, where O indicates that the variables are uncorrelated
and 1 that the model explains all predicted values [10].

(Eacl - pre)2
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The Mean Absolute Error (MAE) is a metric used to
measure the average of absolute differences between predicted
and actual values. It has range (0, +00), where a smaller value
indicates a more accurate prediction model [11].

;
ij(Eact -

1 n
MAE = E ; |Epre - Eact| (6)

Root Mean Squared Error (RMSE) measures the vertical
distance between predicted and actual values following the
regression line. Compared to the MAE, the RMSE is more
relevant for observing large errors because of the way it is
calculated [11]:

n

1
g Z(Epre - Eact)2 (7)

1

RMSE =

What this study shows, beyond the comparison itself, is
that with the right kind of synthetic data, even classical
statistical models such as SARIMA can outperform more
complex models like Prophet in forecasting short-term load
profiles in DC microgrids. This highlights the importance of
data quality and structure, even more than model complexity,
in achieving reliable predictions. Table I, Figure 8 and Figure

?? depict the a comparison summary of the power presdiction
models. Based on the evaluation metrics, the SARIMA model
performed best overall with the lowest RMSE of 0.7905, MAE
= 0.5832 and R? = 0.9230.

Comparison of ARIMA and Prophet Predictions
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Fig. 8. Model comparison

Figure 8 highlights the SARIMA model’s effectiveness
in capturing seasonality and trends, especially in a setting
where patterns repeat cyclically (like energy consumption in
a smart grid or residential setting). However, it is important to
note that while the synthetic dataset was carefully designed
to reflect realistic consumption patterns, there may still be
differences compared to real-world data. Factors such as sud-
den unexpected load spikes, faults, or irregular user behavior
could lead to differences in actual implementation. Overall,
this visualization demonstrates that the SARIMA model is a
strong candidate for time series forecasting in power systems,
particularly when seasonality is a key feature of the data.

TABLE I
MODEL PERFORMANCE METRICS
Model RMSE | MAE R?
SARIMA | 0.7905 | 0.5832 | 0.9230
Prophet | 0.8886 | 0.6253 | 0.9027

Finally, Figure 9 illustrates the standardised metrics compar-
ison form RMSE, MAE and R? in a graphical manner in order
to observe the relative performance of the two implemented
methods.

RMSE Comparison

MAE Comparison

Fig. 9. Performance comparison



V. CONCLUSION

The article discussed a viable approach to online load
forecasting in LVDC microgrids using both conventional
(SARIMA) and data-driven deep learning methods (Prophet).
The results analysis has shown that both methods can be suit-
able for robust regression tasks by combining data augmenta-
tion, model parametrisation and domain expertise. Deployment
of models on embedded hardware such as smart meters is
considered feasible through embedded ML techniques.

Ongoing future work is focused on extending the presented
load forecasting framework with multiple models for time
series data analysis, as well as enhancing data quality through
extended dataset collection and validation.

REFERENCES

[1] G. Stamatescu, R. Plamanescu, and M. Albu, “Online embedded ana-
lytics for energy time series pre-processing in lvdc microgrids,” in 7th
International Conference on DC Microgrids (ICDCM), 2025.

[2] A. N. Akpolat, M. R. Habibi, E. Dursun, A. E. Kuzucuoglu, Y. Yang,
T. Dragicevi¢, and F. Blaabjerg, “Sensorless control of dc microgrid
based on artificial intelligence,” IEEE Transactions on Energy Conver-
sion, vol. 36, no. 3, pp. 2319-2329, 2021.

[3] N. Shabir, O. Husev, H. N. Hokmabad, D. Kamran, M. Jawad, and
J. Martins, “Multi-step ahead short-term residential dc load forecasting:
A comparative study of ngboost-based algorithms,” in 7th International
Conference on DC Microgrids (ICDCM), 2025.

[4] P. T. B. A. C. C. D. V. Pranav, M. Ashwin and N. Venugopal, “Smart
management of dc microgrid using forecasting,” in ICT Analysis and
Applications Proceedings of ICT4SD 2023, 2023, pp. 271-279.

[5] S. A. Alavi, K. Mehran, V. Vahidinasab, and J. P. S. Catalao, “Forecast-
based consensus control for dc microgrids using distributed long short-
term memory deep learning models,” in [EEE Transactions on Smart
Grid ( Volume: 12, Issue: 5, September 2021), 2021, pp. 3718 — 3730.

[6] C. Nichiforov, I. Stamatescu, I. Fagdrdsan, and G. Stamatescu, “Energy
consumption forecasting using arima and neural network models,”
in 2017 5th International Symposium on Electrical and Electronics
Engineering (ISEEE), 2017, pp. 1-4.

[7] K. Samal, K. Babu, S. Das, and A. Acharya, “Time series based
air pollution forecasting using sarima and prophet model,” in ITCC
2019: Proceedings of the 2019 International Conference on Information
Technology and Computer Communications, 08 2019, pp. 80-85.

[8] Facebook, “Automatic forecasting procedure,” accessed: 2025-05-09.

[9] ——, “Prophet: forecasting at scale [online],” accessed: 2025-05-09.

[10] A. Jierula, S. Wang, T.-M. OH, and P. Wang, “Study on accuracy
metrics for evaluating the predictions of damage locations in deep piles
using artificial neural networks with acoustic emission data,” in Applied
Sciences, vol. 11, no. 5, 2021, p. 2314.

[11] D.-C. Mitroi, I. Stamatescu, N. Arghira, and I. Fagirdsan, “Lithium-
ion battery soc estimation: A neural network approach,” in 2024 28th
International Conference on System Theory, Control and Computing
(ICSTCC), 2024, pp. 432-437.



