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Abstract—Advanced manufacturing systems increasingly rely
on intelligent algorithms to discriminate, model and predict
system behaviours that lead to increased productivity. Edge
intelligence allows the industrial systems to collect, compute and
act based on process data while reducing the latency and cost
associated to an hierarchical control system in which complex
decisions are generated in the upper layers of the automation
hierarchy. Greater local computing capabilities allow the online
operation of such algorithms while accounting for increased
performance requirements and lower sampling periods of the
control loops. In this work we present the concept of a cognitive
robotic cell that collects, stores and processes data in situ for
enabling the control of a robotic arm in a production setting.
The main features that characterise the robotic cell are embedded
computing, open interfaces, and standards-based industrial com-
munication with hardware peripherals and digital twin models
for validation. An application of part classification is presented
that uses the YOLOv4 image processing algorithm for real-time
and online assessment that guides the control of an ABB IRB120C
robotic arm. Results illustrate the feasibility and robustness of the
approach in a real application. Quantitative evaluation underlines
the performance of the implemented system.

Index Terms—robot control, deep learning, part classification,
YOLOv4, image processing

I. INTRODUCTION

The Industry 4.0 and Cyberphysical Systems (CPS)
paradigms support the ongoing migration from rigid automa-
tion hierarchies towards flat data acquisition, control and
decision structures that emphasize an intelligent distributed
periphery in industrial scenarios. In practice, local computing
capabilities are exploited in order to deploy complex data pro-
cessing and learning algorithms, such as multi-layer neural net-
works, that can continuously extract information in real time
from multi-variate data streams, both scalar sensor readings
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and rich multimedia information in the form of images and/or
video captures. The main advantages of such an approach lay
in the reduced latencies for control, increased productivity and
a more resource efficient design for sustainable manufacturing.

A 4C approach [1] that first includes computing, com-
munication and control, places cognition at the top of the
classification for intelligent systems. It refers to the pro-
cessing and developing of knowledge from sensor data and
past experiences and applying this knowledge to predict and
anticipate future behaviour. At a technical level, knowledge
can be encoded in neural network weights and is periodically
updated with changes incurred by online collected data streams
and partial retraining of the network. Integrating human-like
features in a technological solution assumes limitations for the
extent to which the evaluation can be carried out. In our case,
the evaluation consists of quantitative metrics that reflect to
which extent the performance of the robotic cell is improved
after deploying and tuning the intelligent algorithm.

The use of deep learning in control applications [2] is
being increasingly adopted as a model-free and data-driven
technique that can process large quantities of diverse input
data which can be collected in ever increasing scenarios
by leveraging modern, connected, automation technology. In
comparison to fully connected neural network architectures,
deep learning networks include a built-in feature extraction
stage that gradually propagates higher level semantics through
the network towards the final output. In the case of image
processing this refers to the encoding of object characteristics
in increasing levels of complexity, from edges, simple shapes,
complex shapes and full objects. Challenges remain for the
exactness and replicability of the provided control outputs in
comparison to conventional model-based techniques, optimal
and robust control. Hybrid methods such as active learning
[3] allow the improvement of the network performance with
human-guided knowledge and domain expertise in the training
phase. Alternatively, transfer learning [4] allows reuse of



existing networks to new applications with reduced adaptation.
Several related works have been identified that described

alternative approaches to robotic cell design with deep learning
image processing for control. A system that includes an
UR5 industrial robot with Faster-RCNN image processing
is presented by [5]. Two types of time-of-flight distance
cameras are used, Kinect One and ZED, in order to collect
additional features. The solution is integrated with the Robotic
Operating System (ROS) for increased flexibility and relaying
the image detection outputs for robot control. Accuracy is
compared while differentiating with the number of discriminat-
ing classes. Image-based seam tracking welding robot control
using an improved edge detection algorithm in described in
[6]. The authors present a pre- and post- processing approach
to extract features from imgaes captured with a CCD camera
of the industrial process. The welding seam is detected through
an improved edge detection method and periodic image cal-
ibration. The method is considered robust to light changes
and other disturbances. Deep learning for object classifica-
tion for robotic disassembly and servicing is described by
[7]. The Tiny-YOLOv2 architecture is used to detect cross-
recessed screws while allowing for limited resource use in an
embedded deployment. Using a manually annotated dataset
of 900 images of 12MP resolution the authors obtain average
precision (AP) metrics of up to 98%. A mobile robot platform
with object detection and recognition is showcased in [8].
A combination between conventional machine learning and
deep learning architectures is proposed to achieve high level
representations of both visual and textual content. The deep
learning component covers various typical neural network
architectures: VGG16, AlexNet, CaffeNet, GoogLeNet and
ResNet with various layers, that are evaluated for the presented
task and achieves an accuracy of up to 87% with a significant
reduction of retail surveying time. In previous work, enabling
contributions for integrated industrial communication of open-
source software frameworks with industrial PLC technology
for motion control applications have been described in [9] and
[10]. Fog computing architectures enabling distributed sensing
[11] and industrial cloud sensor integration [12] also provide
support for ubiquitous computing and learning.

Main contributions of our current work include:

• Conceptual description and implementation of a cognitive
robotic cell system for advanced manufacturing;

• An application and evaluation of the YOLOv4 deep learn-
ing neural network architecture to parts classification.

The rest of the papers is structured as follows. Section II
presents the concept of a cognitive robotic cell with embedded
learning support for intelligent data processing and digital
twin model that extends the application space through scalable
experimentation. Section III details the YOLOv4 deep learning
image processing algorithm and provides the requires justifi-
cation for its use in our work. In depth results are discussed
in Section IV together with technical details that showcase the
performance of the implemented solution. Section V concludes
the paper with outlook on future work.

II. SYSTEM DESCRIPTION

This section presents the conceptual design associated to the
robotic cell and its extensions toward cognitive features. Figure
1 illustrates the components and interactions that support
higher level functions for the robotic cell systems. The main
components of the physical robotic cell are the following:

• Robot: the robot system includes the 6 DoF robotic arm
together with the robot controller and gripper;

• PLC: the programmable logic controller coordinates the
functionality of the robot arm with the other components
of the system for achieving high level tasks; the PLC
includes the central processing unit, input-output modules
for analog and digital signals and suitable industrial
communication modules;

• Drive system: the drive system includes a servodrive for
accurate positioning of a conveyor belt module; it carries
out the synchronization required between the pick-and-
place operation and the part transport;

• HMI: a touch screen human machine interface is provided
for local visualisation and operation of the process state;
it can also display alarms and error codes suitable for on
site debugging and fault remediation;

• Industrial communication: PROFINET is used as
standards-based industrial communication network that
connects all the main components of the robotic cell;
it allows real-time features that guarantee deterministic
communication for control; for local identification and
part tracking, an RFID module with associated tags is
also employed;

• Energy Meter: energy metering at the robotic cell level
allows the profiling of individual operations and the
construction of a data-driven predictive model to flag
anomalous functioning through spikes and other types of
consistent deviations in the energy traces.

In addition to the physical realisation a digital twin model
is operating in parallel to the real system. It allows extended
testing and simulation of the physical behaviour and the
generation of synthetic data traces to improve performance
of the control logic. This limits wear and tear of the real
system and can prevent certain dangerous and unsafe oper-
ation conditions in unknown system states. The digital twin
model is linked with the physical system via a Model-based
Design (MBD) environment and supporting tools, such as
Festo CIROS. It allows accurate, part level, modelling of the
various mechanical and electrical components. Functionality
is implemented by running the same PLC code and robot arm
routines as in the existing equipment. At the PLC level, a ded-
icated embedded machine learning library can be used to pre-
process and model the sensor data traces for supervised and
unsupervised learning close to the manufacturing process. The
digital twin model can also be deployed in a cloud environment
for continuous operation where it can be periodically updated
according to observed behaviour in the physical system. The
solution inclues both proprietary software modules from the
manufacturers of the automation equipment, as well as open-
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Fig. 1: Conceptual Diagram of the Cognitive Robotic Cell

source software components that enable the local integration
and connection to third-party modules.

A dedicated camera subsystem is included as add-on acces-
sory. It is used for realising object detection and identification
and the vision-based control of the robotic arm.

III. COMPUTATIONAL ALGORITHMS FOR PARTS
CLASSIFICATION

There are currently two categories of algorithms that iden-
tify objects, namely what is called ”one-shot” or ”multi-
shot” detection. A one-shot model is capable of identifying
an object without applying a preliminary step. On the other
hand, multi-shot models use a preliminary step in which
regions of importance are detected and then objects in these
regions are identified. Although multi-shot models have higher
accuracy, one-shot models are much faster, allowing real-time
detection. A well-known algorithm often used in machine
vision applications is YOLO [13]. This architecture does not
look at the whole image. Instead, is scans parts of the frame
which have high chance of containing the object. In YOLO or
You Only Look Once a single convolutional network predicts
the bounding boxes and the class probabilities for these
boxes. YOLO is orders of magnitude faster than other object
detection algorithms, like CNN, R-CNN. The limitation of
YOLO algorithm is that it struggles with small objects within
the image.The network architecture is based on a multi layer
structure made up of convolutional layers, 53 in total, which
have the main purpose of extracting the essential features
from a picture. The activation function used is ”Mish” and

provides a way to improve the training process by increasing
the network accuracy.

f(x) = x ∗ tanh(ln(1 + ex)) (1)

In order to evaluate several algorithms, there needs to be
some type of metric which can be used to rank them. In the
case of object detection networks, the mean average precision
(mAP [%]) is used. It compares the detected box with the
ground-truth bounding box and returns a score. The accuracy
of the model is directly proportional to this performance
metric. The loss function consists of three parts: regression
loss, confidence loss and classification loss. The last one, is
based on the Euclidian distance between the predicted box and
the ground truth. Both of the remaining two metrics are based
on cross entropy error. [14].

f = 1− IoU +
ρ2(b, bgt)

c2
+ αυ− (2)
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IV. RESULTS

Before implementing the physical cell, a preliminary simu-
lation has been developed. Using Siemens S7-PLCSIM, we
were able to develop the software capable of controlling
the installation. Besides the Siemens solution, there was also
created a simulation counterpart using the B&R Automation
Studio. The signals for the communication of different entities
were transmitted into a Node-Red instance using OPC-UA and
S7 Communication. Thus, other simulated processes could be
integrated into the virtual cell. The robot movement has been
tested using the Festo solution, CIROS. The drawback is that
the Festo simulation software, doesn’t offer support for ABB
robots. Instead, a Mitsubishi arm has been selected. After
the construction and validation of the simulation, the physical
implementation was started.

The results for this application were obtained by overlapping
a layer of artificial intelligence onto an industrial process.
Below the physical equipment: Siemens 1200 PLC, display
and ABB robotic arm, we have implemented a dedicated
intelligent software layer, capable of identifying and returning
the spatial coordinates of the desired object. The framework
used for the classification method is YOLO (You Only Look
Once) [15]. A picture of the physical realisation of the robotic
cell used in the experiments is presented in Figure 2.

Fig. 2: Cognitive robotic cell system

The main objective is to identify a solution for the industrial
process which could be solved by using artificial intelligent
structure in order to optimize the process by reducing the
down-time and improving the production time. Multiple ver-
sions of the YOLO algorithm were tested, but finally the
fourth iteration was chosen. A brief comparison of the existing
architectures can be observed in Table I, which presents the
performance of the YOLOv3 tiny, YOLOv3, YOLOv4 tiny
and YOLOv4 networks on realistic datasets created by our
experiments. The mAP, loss function and identification time,
in miliseconds, are reported.

Network mAP(%) Loss Identification

YOLOv3 tiny 19.68 1.9065 21.9 ms
YOLOv3 46.41 0.5065 42.2 ms

YOLOv4 tiny 49.78 1.485 19.6 ms
YOLOv4 94.45 0.3123 43.8 ms

TABLE I: Performance of various YOLO generation on the
parts classification problem

The application runs in the cloud environment using the
Google Colab Platform. Due to the restriction created by this
approach, the communication between the cognitive applica-
tion and the physical hardware is done using a gateway created
via Node-Red. When the network identifies an object it will
generated a 4 point coordinates system for each one. Thus,
the information can the be sent to the control level PLC and
the system will integrate the new information into its software.
Communication between the cloud and the gateway is done by
reading/writing CSV files, and the connection of the gateway
to the PLC is done using S7-Communication (Figure 3).

Fig. 3: Diagram of the control solution

The first step in building such an application is creating a
set of images that will be used for training and validation.
The database contains 90 pictures for each of the object
that will be identified. In this specific application, we must
identify and classify between three types of small pieces
used in the assembly process. Also, the resolution of these
images has been taken into account, as higher resolutions will
improve the network identification ability. Based on the fact
that the position of the camera is in the relative vicinity of
the identification space, we concluded that almost any type of
camera can be used. In order to reduce the cost of the system,
we settled on a 720p, corresponding to 1280 pixels width and
720 pixels height, camera. The YOLO architecture was chosen
because the system requires a fast and precise identification
procedure. Also, unlike the industrial counterpart, this system
is not placed in perfect conditions regarding the identification.
Even the smallest change of light can drastically impact the
process, so the neural network must be robust when faced with
such perturbations. The solution has been tested using both
natural light and artificial light. Under cold light conditions,
over 5000 Kelvin, the detection has the best precision. The
environment in which the cell has been tested could not take
into account the fine particles of dust that are commonly found
in an industrial setting.



The next step is training the YOLOv4 network to detect
three types of objects. For this, we used the Google Colab
Platform, which offers free computational resources. The
scope of this application is to develop a real time system.
Thus, using a low performance laptop or computer, hardware
speaking, would not be enough. The software is written using
the Python programming language. The framework on which
the architecture is working, is based on the C++ language.
Neural networks can be viewed as an optimization problem
where the scope is to minimize a loss function. This describes
how well the network is able to identify the objects based on
the training and validation sets on which it was trained. The
ratio of training to validation data used was: 5 to 1. The neural
network has been trained until the model could not reduce
its loss any further. Thus, after training for 5400 epochs the
model could not be improved anymore as it is shown in Figure
4. Figure 5 presents the classification confusion matrix with
the types of classification errors encountered during testing.

Fig. 4: Evolution of the loss function

Fig. 5: Confusion matrix

We continued by creating a script capable of continuously
running the identification software that also generates a set

Px Left Px Top Px Right Px Bottom Type

283 166 361 221 Bl Piece
304 241 378 309 Bl Piece
440 159 515 224 Or Piece
235 243 273 305 Gr Piece
436 243 475 306 Gr Piece

TABLE II: Parts coordinates

of coordinates for each detection, as in Figure 6 and Table
II. This piece of software also runs in the cloud. Due to this
approach, the information regarding the detection is sent to
the control unit using a gateway capable of interpreting comma
separated value (CSV) files and converts the data to be sent via
S7-Communication. Each detection is able to give the spatial
coordinates of the object in pixels reported to the top left
corner of the frame. The position of the camera is fixed related
to the identification plan, and so we are able the compute
the transformation from pixels to millimeters using an known
object as a reference.

Fig. 6: Example of identification

A drawback of the architecture is that the software is
capable of generating the coordinates of the object based on
a rectangle shape, not on the object itself. Meaning that the
values detected are not related to the corner of the object.
This can be mathematically corrected. We used equation 3
to recalculate the true positions and also to transfer the
measurement of the system from pixels to millimeters, because
this information is used by the robot which needs to know
the two offsets on x and y axis and the rotation of the
object. The calculation is based on the real dimension of the
object. In this application, the small rectangular piece has
four measurements. (X1, Y1) represent the real measurements,
and (x, y) represents the measurements calculated from the
detection.

α = arcsin

(
y − x ∗ ( y1

x1
)

1− ( y1

x1
)2

)
/0.01745329252 (3)



Having the actual rotation of the object and its spatial
coordinates means that now the system can precisely calculate
the movement of the robot and the best position for the
gripping procedure. The programming of the ABB robotic
arm is made using RAPID language. Also, the cinematic
calculation of a trajectory is done by the integrated controller.
As a final acceptance test, the cell has been subjected to series
of tasks designed to test the robustness of the process and the
precision of the neural network.

V. CONCLUSION

We have presented a system architecture used for object
detection into a cognitive robotic cell. The solution includes
the implementation of a neural network based on YOLO
architecture, the API which allows the communication of the
software with the psychical hardware and also the program-
ming of the robotic cell in order to fulfill its desired behaviour.
Future work will focus on validating the real-time performance
of this solution in a real production environment.
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