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Abstract—Increased adoption of energy monitoring devices
across the energy system has resulted in large quantities of multi-
variate measurement data sets available for analysis at multi-scale
resolutions. For buildings in particular, these can be leveraged to
extract relevant information in order to characterize and improve
its operation by establishing trends and anticipating faults before
they occur. Several time series data mining algorithms have be-
come available for efficient subsequence search and classification
which can be adapted for domain-specific load profiling. We
present an application of the Matrix Profile (MP) technique to
energy time series for large commercial building load modelling.
Several results are discussed which concern discord identification,
building-specific MP values distributions as well as the effect
of the particular distance metrics on the resulting processed
input time series. Model free load forecasting can also serve as
a suitable baseline for more advanced methods with contextual
variables. Working with higher level information pieces leads to
a speed up of the analysis and eliminates redundant raw data
which makes the processed data suitable for online algorithm
implementation and real-time building energy management.

Index Terms—time series, data mining, energy management,
smart buildings

I. INTRODUCTION

Ubiquitous deployment of Internet of Things (IoT) class
devices in the energy system results in large quantities of data
that have to be efficiently processed for real-time decisions.
Such devices can integrate direct measurements of energy
parameters such as: voltage, current or frequency, indirect
measurements and computed metrics, alongside environment
and contextual parameters. The design of such a system is
described in [1] which presents the integration within an
industrial fieldbus system based on RS-485 and a suitable
web interface for data vizualization and programmatic access.
Industrial-grade technologies are used in order to provide a
robust solutions which is compatible with commercial imple-
mentations for long term, reliable operation. Several types
of protocols and standards such as OPC-UA and MQTT
as well as data formats such as XML, JSON, CSV, have
become common to enable convergence between the industrial
automation domain (OT - Operational Technology) and the
informtation technology domain (IT). These broadly represent
implementations of the Industrial Internet of Things (IIoT) in
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the practical domain, which enables higher level tasks on the
collected data: processing, analysis and optimization.

The built environment is a salient application domain of
new approaches for instrumenting and optimizing energy use
through data processing and IoT systems. A blueprint for
designing Building Energy Management Systems (BEMS) is
described by [2]. It provides an optimization model for decid-
ing energy use priorities which factors in energy sourcing, eco-
nomic and environmental constraints. Two real use cases are
presented through buildings in Austria and Spain to illustrate
the improved performance, while accounting for the dominant
role of the heating and cooling subsystems of the energy
footprint of the building - as the area most prone to economic
optimization given its large share of the total building energy
use. [3] investigates the role of local energy storage to assure
optimal energy management within a building. The salient
finding suggests that thermal energy storage, in the form of
heat or cold, provides better results than electrical energy
storage through batteries given their particular limitations with
regard to cost, cycle lifetime and charging/discharging profile
limitations. The working definition for energy management
within a building that we consider for the context of this paper
includes monitoring and analysing energy usage in order to
optimize and conserve energy while maintaining suitable level
of service e.g. comfortable conditions for the occupants and
reliable power supply to various building subsystems.

An in-depth study for building energy time-series modelling
for discord identification in building energy load profiles is
presented in [4]. Daily load profiles are constructed for both
commercial and residential applications, while anomalies are
determined by using statistical tests on the matrix profiles
as proxy for typical load patterns. The Kolmogorov-Smirnov
(KS) test is used to discriminate unusual daily profiles from
”normal” profiles constructed on the aggregated building data
at daily timescales. This statistical approach evaluates the null
hypothesis H0 that two data instances adhere to the same
distribution versus the alternative hypothesis HA that two data
instances do not adhere to the same hypothesis. The p-value
is computed for the confidence level associated with this test
with small values (1% and 5% can be used as cut-off values)
indicating the possibility of rejecting the null hypothesis. Daily
profiles that do not reject the null hypothesis are flagged for
subsequent processing.



Similar application can be found is other domains as well,
such as anomaly detection for manufacturing systems using
intelligent data processing in [5]. The authors present and
use case in pharmaceuticals production where continuous data
streams are acquired through plant automation systems and the
MP algorithm is used for discord identification on dedicated
computing nodes in online operation. This highlights the
broad applicability to a wide range of sensor data processing
challenges, beyond the current energy use case.

The main contributions of the paper are two-fold:
• Justification of the MP algorithm for domain-specific

information extraction from building energy time series;
• Experimental results for exploratory data analysis (EDA),

discord analysis and model-free forecasting, on public
datasets which allow for benchmarking approaches.

Our previous recent contributions to the field have con-
cerned multi-level models for anomalies that enable local
control [6], deep learning using recurrent neural networks for
energy time series forecasting [7] and intelligent energy man-
agement for buildings integrating state-of-the-art techniques
from the recent literature [8].

The rest of the paper is structured as follows. Section II
presents a conceptual overview of the Matrix Profile algorithm
together with a discussion on discord analysis and the distance
metrics that can be used for determining this higher level
representation of the collected data. A specific case study and
associated results are discussed along three main directions in
Section III: evaluation based on examples from a public large
commercial building dataset, the application of MP for discord
identification and the impact of different distance metrics for
constructing the time series profiles and illustration of the use
of MP for model-free forecasting with Huber loss regression
function. Section IV concludes the paper with outlook on
potential developments and future work.

II. TIME SERIES DATA MINING USING THE MATRIX
PROFILE

Matrix Profile (MP) is a relatively new methodology used
for time series data mining, introduced by Yeh et al. [9].
Matrix Profile is arguably a dimension reduction approach
which requires less training time, data and parameter tuning
compared to other data mining methods. A Matrix Profile
of a time-series T of length n is a compact time-series
that stores the z-normalized Euclidean distance between each
subsequence of length m and its nearest neighbor. The two
very important use cases of Matrix Profile are: finding similar
patterns among a time-series i.e. motif detection and anomaly
discovery for multivariate time-series i.e. discord detection.
Various software algorithms implement the method which is
suitable for online implementation with high performance.

According to [10] a time-series motif is the most similar
subsequence pair of a time-series. Considering a time-series
T and a two time-series subsequences of length m, {Ta,m,
Tb,m} is considered a motif pair if:

dist(Ta,m, Tb,m) ≤ dist(Ti,m, Tj,m), (1)

∀i, j ∈ [1, 2, ..., n−m+ 1] with a 6= b, i 6= j.
From an alternative perspective, one of the representative

applications for the Matrix Profile is finding discords in a
time-series. A discord is the most unusual subsequence within
a time-series. More specific, the subsequence that has the
maximum distance to its nearest non-self match neighbor
can be interpreted as an unusual subsequence or anomaly.
Considering a time-series subsequence Tc,m of length m non-
self match with Td,m and a subsequence Tp,m non-self match
with Tq,m, Tc,m is a discord if:

min(dist(Tc,m, Td,m)) > min(dist(Tp,m, Tq,m)), (2)

with c 6= d, p 6= q and dist a z-normalized Euclidean distance
function.

For distance calculation between subsequences, Matrix Pro-
file uses the z-normalized Euclidean distance or more general
p-norm. The z-normalised Euclidean distance is described by
the following formula [11]:

D(X,Y ) =
√
2m(1− corr(X,Y ) (3)

where X and Y are time-series and m represents the length
of a sequence.
corr(X,Y ) is the covariance of the two variables (X,Y )

divided by the product of their standard deviations or shortly,
Pearson’s Correlation Coefficient and is described by:

corr(X,Y ) =

∑m
i=1 (XiYi −mµXµY )

mσXσY
, (4)

where µ is the mean and σ is the standard deviation.

µX =

∑m
i=1Xi

m
,µY =

∑m
i=1 Yi
m

(5)

and

σ2
X =

1

m

m∑
i=1

(Xi − µX)2, σ2
Y =

1

m

m∑
i=1

(Yi − µY )2. (6)

For the current research two more distance metrics have
been proposed. The Matrix Profile algorithm has been adapted
using Manhattan and Chebyshev distances respectively, in
order to have comparison results and to see which of the
distance metrics helps obtaining the best results.

The Manhattan distance is described by the equation 7 and
Chebyshev distance formula is described by equation 8.

D(X,Y ) =

m∑
i=1

|Xi − Yi| (7)

D(X,Y ) = max
i

(|Xi − Yi|) (8)

From a computational point of view, the Manhattan distance
is faster to compute while the Chebyshev distance takes
longer to compute than the standard Euclidean distance metric.
Introducing a selection of the computed distance metric as a
parameter in the MP calculation allows for flexibility in the
implementation.



Combining motif and discord discovery obtained with the
MP, classification models can be developed to efficiently learn
patterns that can be integrated into higher level decision
schemes. Efficiency is closely related to the significant dimen-
sion reduction achieved by labelling the relevant components
of the energy time series while avoiding full processing of the
datasets. As a side benefit, this inherently eliminates most of
the redundant information contained in the input data.

III. RESULTS

For the purpose of our study, we use the Building Data
Genome (BDG) database [12] to test our information extrac-
tion approach for consumer-side building energy time series.
This provides a curated collection of energy readings from
more than 500 (mostly academic) buildings from various
regions, climates and with a good mix of dominant power
usage. Active power readings are sampled at 1h for a full
year, with context e.g. local temperature and meta-information
e.g. usage profile and building size. The database serves as a
good support for interdisciplinary research in this area in what
concerns, models and algorithms for energy system control and
optimization.

A. Exploratory Data Analysis for Building MP Series

We select from the BDG dataset, three representative build-
ings with different dominant usage profile: office, laboratories
and classroom. All buildings are from an academic campus
located in Zurich, Switzerland, which mitigates external envi-
ronmental factors to be compensated in the analysis. We first
compute the MP vectors for each of the buildings, that we use
for further analysis. The z-normalisation embedded into the
MP method eliminates the difference in absolute energy use,
partly determined also by the difference in the building size.
The reference buildings are subsequently identified through
their short names, as identified in the raw input files: ”Travis”,
”Tracy”, ”Teri”.

In Table I, the main statistical indicators are highlighted
based on the pre-computed MP values for each building. The
minimum, maximum, average µ and standard deviations σ are
reported. In addition to these basic metrics, we also report
the skewness and kurtosis indicators. There provide addi-
tional information with regard to the shape of the underlying
probability distribution of the computed values, as compared
to an ideal gaussian distribution. Skewness is computed as
s = E(y−µ)3\σ3 with negative and positive values indicating
left and right unabalancing of the data around the sample
mean. With regard to kurtosis k = E(y−µ)4\σ4, lager values
e.g. higher than three indicate increased tailedness of an error
prone underlying probability distribution.

The data in the table is grouped by categories, associated to
the MP subsequence length parameter m used for obtaining
the profiles for each building: D - daily subsequences of length
24, W - weekly subsequences of length 168 and M - monthly
subsequences of length 720. The total size of the time series
is 8760 corresponding to a full year of hourly readings.

TABLE I
MP VALUES STATISTICAL INDICATORS

MP
Teri Traci Travis

D W M D W M D W M
MIN 5.8 2.9 2.5 7.7 3.3 2 6.6 2.1 2.1
MAX 9.3 9.3 9.8 8.7 8.7 9.5 8.2 11.8 11.8
µ 7.9 4.4 4.4 8 4.7 5.5 7.6 3.8 3.4
σ 1.4 1.7 1.1 0.2 1.7 1.8 0.6 2 1.2
s -0.3 1.7 1.5 1 1.1 0 -0.3 1 1.4
k 1.4 5.1 5.7 3.1 2.4 1.9 1.3 2.3 4.5

Figure 1 shows the histogram for the three analysed build-
ings alongside the empirical cumulative distribution function
(ECDF). Main finding is that we observe distinguishing shapes
of the MP values histogram based on dominant usage profile.
In this case the classroom building has most of the MP
values concentrated at lower levels which indicate a recurring
subsequence similarity given the deterministic usage schedule
of such spaces according to predetermined. In contrast, the
laboratory building is more prone to distinguishing energy use
patterns and anomalies. These are reflected by a somewhat
uniform distribution of the MP values, including larger values.
The office building profile is in between the two with a smaller
peak, shifted to the right of the classroom building.
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Fig. 1. Analysis of MP Values: (a) Histogram (b) ECDF



The ECDF plot illustrates how 90% of the values are
below 5, 6 and 8.2 for the classroom (Teri), office (Travis)
and laboratory (Tracy) buildings respectively. The increased
steepness of the curves for the Travis and Teri buildings are
directly associated with the increased density of the values in
different areas of the histogram at 2.5 and 4.5 values. The
smoother progression of the laboratory building can be also
determined by somewhat inconsistent and aperiodic variations
of the local energy use which can be caused by sporadic use
of particular energy consuming laboratory equipment.

B. Discord Analysis and Effect of Distance Metric Selection

Figure 2 illustrates the active power readings in kW for
a half year period in the case of the Travis office building.
MP is computed with a weekly subsequence length parameter
m = 168 and presented in the bottom part of the figure. The
red dots mark the identified top-k discords with k = 3. In order
of importance these occur on the following dates: December
27th, December 2nd and September 6th. For all time series
that were investigated one of the discords resulting from the
MP vector was placed in the period between Christmas and
New Year’s Eve which can indicate the fact that, from the
perspective of the active power consumption, this period is
highly dissimilar to any other period during the year. This is
valid for all types of dominant building usage including offices,
laboratories and classrooms and can be clearly assigned to
the winter holiday. Other discords exhibit a strong correlation
with either certain periods of the academic year and with the
building dominant usage type. These are however strongly de-
pendent on local particularities e.g. the university scheduling,
country, etc. and other contextual information such as weather.
Identifying discords can be a promising bootstrapping solution
to obtain labelled energy datasets that can be useful for higher
level supervised learning tasks. In this situation a model can
be built to anticipate inconsistent energy forecasts and adjusts
energy management schemes dynamically.

Jun 2016 Aug 2016 Oct 2016 Dec 2016
60

80

100

120

140

T
im

e
 S

e
ri
e
s

Jul 2016 Sep 2016 Nov 2016 Jan 2017
0

5

10

15

M
a
tr

ix
 P

ro
fi
le

Matrix Profile value

Discord

Fig. 2. Sample Input Data and Associated MP with Discords

Figure 3 shows a boxplot graphic of the MP values of a
building grouped by weekdays versus weekends. This could
suggest a difference between the two groups with higher
average values during weekends, 4.2 versus 2.8. This can
be explained through the periodic structure of the workdays
in what concerns power consumption. The weekend values
have a wider interval of variation and it can be observed
as well the large number of outliers that fall outside the 1.5
times the Inter Quartile Range (IQR). This can be explained
through factors that produce larger absolute variations of the
total power consumption of the building throughout the year
which produces highly dissimilar weekly subsequences. This
is considered to be a characteristic of commercial building
types as compared to residential ones.
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Fig. 3. Sample of Weekdays vs. Weekend boxplot (Travis)

Figure 4 shows a boxplot graphic of the MP values of a
building grouped each day of the week. The distribution is
on average similar during every day of the week. Fridays
can be observed to have a wider variation range which can
be assigned to longer weekends and shorter schedules in
different times of the year at the end of the work week. Further
investigations can be carried out by relating the MP values to
typical daily schedules with lower subsequence length which
can provide fine grained insights. The probabilities distribution
built based on these values serve as a reference parametric
model for certain classes of buildings.

We have further implemented the Manhattan distance, as al-
ternative to the reference MP algorithm, and Figure 5 presents
the comparative view in reference to the default Euclidean
distance for the period associated with the first discord in the
month of December. It can be seen hot the Manhattan MP
calculations result in a noisier time series compared to the
standard version. Smoothing out this time series would results
in a highly similar distance metric profile with an advantage
in the computational time required.
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Fig. 4. Sample of Day of the week boxplot (Travis)
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C. Model free load forecasting using MP

Common metrics to evaluate prediction performance for
regression tasks include the Mean Squared Error (MSE) and
the Mean Absolute Error (MAE). These two metrics are
computed as follows:

MSE =

n∑
1

(yi − ŷi)2

n
(9)

MAE =

∑n
1 |yi − ŷi|
n

(10)

with yi the real sample i, ŷi the estimated or forecasted
value and n the number of samples. More specifically, MSE
quantifies the squared bias of the estimates plus the variance,
while MAE only accounts for positive variations from the real
values. MSE penalizes larger prediction errors comparative to
MAE. In order to revert to the same units of measure (non-
squared) the square root of the MSE can also be considered
in the form of RMSE.

Depending on the way that extreme prediction errors should
be handled, either by emphasizing them as in the case of
MSE or discounting them for MAE, a suitable trade-off can
be achieved by implementing the Huber loss function [13].
Huber loss is expressed as:

Lδ =

{
1/2(y − ŷ)2, if |y − ŷ| ≤ δ
δ|y − ŷ| − 1/2δ2, otherwise

(11)

where y is the actual value and ŷ is the predicted value.
The metric is parametrised through the value of δ where values
near zero lead to a quadratic formulation of the metric, similar
to the MSE, and a large values lead to the MAE. In this
manner domain specific objectives for building automation can
be accounted for, for example in the case of high charges for
peak loads versus constant accumulation of prediction errors
in estimating local consumption.

Figure 6 presents the result of model-free MP-based load
forecasting for the Travis building at hourly sampling rates.
This type of approach can be compared as baseline to new
methods such as SARIMA models and Long Short Term
Memory neural networks for time series. The prediction per-
formance in this case is lower but for some use cases it can
be compensated by online forecasts without computationally
intensive model selection and training.
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Fig. 6. Load Forecasting using MP

IV. CONCLUSION

The paper presented an approach to extract useful in-
formation from large commercial building energy traces by
using a state of the art technique. We have presented re-
sults which concern exploratory data analysis on MP value
vectors, identification of discords and the effect of distance
metric selection as well as using the MP for model-free load
forecasting as baseline technique. Given fast performance of
the algorithms, the approach is suitable for implementation in
embedded building energy management techniques for real-
time local control. As many public datasets of commercial
building energy traces are now publicly available, the method
is scalable to analyze them for more robust conclusions.

Future work will be focused on the integration of this ap-
proach in decision support systems for local (micro-)grids [14]
with focus on the active role of large commercial buildings in
demand response and peak shaving strategies. We plan to scale
up the modelling to provide a generalized methodology for
new richer datasets with increased contextual information [15].
New open-source libraries that implement the MP technique
allow the integration of the methods into common data science
environments and workflows with larger adoption that enables
productive applications for industry and energy.
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