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Abstract—Smart buildings viewed as cyber-physical sys-
tems are currently a growing research topic oriented towards
collaborative groups of buildings. Since buildings consume
significant amount of energy, research efforts have con-
centrated to make them more efficient, in particular the
Heating, Ventilation and Air-Conditioning (HVAC) systems
that represent more than 40% of the buildings’ energy
budget. A key piece of information that facilitates the
design of energy efficient HVAC systems, in particular in
commercial buildings, is the knowledge of the real-time and
predicted occupancy, which would allow an automatic control
process to balance the trade-off between energy use and
quality of comfort. In practice however, occupancy counting
devices are not being wide-spread deployed in the market,
so in order to move forward, we believe it is important to
estimate occupancy using existing sensors currently deployed
in buildings. In this work, we propose to use a combination of
sensor data currently available in buildings, such as CO2 data
and airflow, and develop a supervised learning framework
that uses existing data to estimate occupancy. We developed
two data-driven techniques based on Random Forest (RF)
and KNN algorithms to estimate occupancy based on data
collected from 4 rooms. Our results show an average RMSE
occupancy error that varies from 3.10 to 11.21 for RF
(depending on the room) and 2.96 to 8.46 for KNN, with
best case results of 1.08 and 0.97 respectively. We believe
that our framework can be integrated into existing Building
Management Systems (BMS) control processes to improve
energy efficiency in smart buildings.

Index Terms - Smart Buildings, Random Forest, KNN,
occupancy estimation

I. INTRODUCTION

Precise occupancy estimation in buildings has many
applications, enabling smart Heating, Ventilation and Air
Conditioning (HVAC) system utilization [1], [2] as well
as dynamic and real-time thermal comfort [3], [4], [5]
and better building control [6]. Commercial buildings have
great potential to run control processes based on real-
time and predictive occupancy, improving the quality of
service perceived by users in terms of temperature com-
fort and healthy air ventilation, while minimizing energy
use. In commercial buildings, HVAC systems consume
around 42% of the overall energy [7], and the Building
Management Systems (BMS) cannot efficiently reduce this
consumption with modern control techniques due to lack
of information with regards to two main aspects: lack
of knowledge regarding the actual location of the users
inside the buildings at any time (occupancy patterns),
and lack of knowledge regarding their subjective demands
(comfort levels). In this work, we concentrate on data-
driven techniques to address the occupancy modelling

challenges when there is no infrastructure specifically
deployed to provide reliable direct measurements, and try
to leverage existing data sources, such as CO2 data and
airflow to address the problem.

Occupancy estimation is a challenging issue due to
multiple factors: i) there is currently no wide-spread
adoption of special sensors in buildings to directly measure
occupancy in each zone; ii) ground truth occupancy data,
critical for evaluation purposes, is obtained using video
cameras, which is still difficult to process and violates data
and privacy concerns of the building occupants; iii) the
algorithms and techniques used for occupancy estimation
need to deal with poor data quality from available sources,
which exacerbates the problem of feature selection and
minimization of error for occupancy.

In our work, we present a data-driven framework based
on statistical learning techniques that addresses some
of the shortcomings mentioned above. We evaluate two
techniques to estimate the real-time and predictive occu-
pancy based on existing data sources in the building: (a)
Random Forests (RF) and (b) K-Nearest Neighbors (K-
NN). Random Forests have not been extensively exploited
in occupancy estimation and prediction, but it is a known
and proved technique with high performance that corrects
for the tendency of baseline decision trees for overfitting
the training set. K-NN is a non-parametric method that
is straight forward to implement. It is however sensitive
to the local structure of data and it is suitable to be
implemented on large datasets with few attributes. The
only possible drawback of computational cost does not
apply to our case since we consider a sliding window
method for data training and testing. Furthermore, both
methods can run in any modern desktop machine without
the need of cloud services, a situation often encountered
in small and medium sized building without extensive IT
infrastructure.

Our work builds upon the latest research results in
the topic of smart buildings and occupancy estimation,
highlighting the impact of quality of the data and the
importance of proper occupancy behavior modeling. This
paper provides the following contributions:

• We developed, tested, and evaluated two machine
learning approaches for occupancy prediction using
data from an office building [8] with regards to CO2
concentration and ventilation airflow, as an alternative
to situations when dedicated occupancy sensors are



not in place.
• We assessed the validity of our results for occupancy

profile identification using a sliding window splitting
method for data feed from several rooms in Univer-
sity of Southern Denmark as a use case [8].

Our paper is organized as follows: in Section II, we
present related work which defines the current scientific
context of our contributions. Section III describes the data
driven approaches used for occupancy estimation using
a sliding window methods for the input data stream. In
Section IV we present the results of our evaluation, dis-
cussing the insights provided by our solution. We discuss
significant insights, emphasizing the benefits of using our
proposed solution. Finally, in Section V we conclude,
summarizing the results and describing areas for future
research directions.

II. RELATED WORK

Novel smart building technologies affect multiple stake-
holders, from building facility teams and building owners,
to energy suppliers, research engineers, and occupants of
modern buildings. There is a trend to start using sensors to
detect human presence and integrate them with the local
information systems in order to cut operational costs.

In spite of these advancements, the energy sector still
faces a performance gap in the building domain related to
multiple factors, in particular design factors, construction
factors and operation modes. Energy efficient operation of
buildings could take advantage of recent advancements in
the field. Recent studies [9], [10] show that the energy
performance gap in buildings is sustained mainly by lack
of occupancy monitoring, occupants behavior models and
inappropriate building management and control strategies.
Furthermore, in the literature it is emphasized the positive
impact on energy performance that energy usage monitor-
ing has within a dynamic schedule modeling [11].

Applying schedules based on estimated occupancy show
promising energy savings [12] illustrating ways of imple-
menting them such that temperature and airflow setpoints
are set to vary on a larger range. This is explained by the
fact that persons induce loads with their dissipated body
heat and appliances used, which trigger the HVAC system
to send proper commands towards the variable air volume
(VAV) units that deliver the cooling/heating energy to the
thermal zones.

Occupancy estimation and prediction [13] are often used
to optimize building systems employing Model Predictive
Control [14], [15]. The data sources for the human pres-
ence detection are from new wireless sensor networks [16]
such as CO2, PIR, infrared sensors but also from existing
infrastructure: smart meters, WiFi, and HVAC sensors.

Modeling methodologies from recent studies conducted
to asses the room usage percentage, report a combina-
tion of multiple data sources types and broad palette of
algorithms. For instance, in [17], the authors used an
infrared sensor grid to detect human presence which feeds
a Markov model chain algorithm. To reveal patterns in
human behavior within office buildings, some researchers

from Singapore [18] proposed fusion framework using
particle filter algorithm with improvements of 5-14% for
estimation accuracy among several methodologies. An-
other group of researchers [19], from China, propose a
solution consisting in the combination of K-NN with K-
means clustering to detect high resolution occupancy level
using WiFi and Bluetooth Low Energy technologies. They
report thermal load savings up to 14.16% compared with
actual occupancy at 50% humidity and 25◦C temperature.
From the same family with K-NN models, the Random
Forest (RF) models were applied and returned promising
results for occupancy tasks [20], [21].

The state-of-the-art solutions previously presented
showed different sensing technologies and data-driven
techniques to estimate occupancy in commercial build-
ings. We note that sometimes, algorithms for occupancy
estimation are difficult to be adopted and transferred to
other spaces/buildings due to the lack of similar sensor
networks or engineering features. Thus, we employ su-
pervised learning techniques using existing data sources
which are present in most of university buildings.

III. OCCUPANCY MODELS

In this section, we explain the algorithms and techniques
used to solve the occupancy estimation problem. In our
work, we use RF and K-NN classification algorithms to
address the estimation of the occupancy levels of the
rooms/zones based on the several inputs that are usually
available in commercial buildings. We use as inputs the
value of the CO2 concentration, as measured by sensors,
and ventilation airflow, as measured by the position of
the airflow damper, in each room/zone. The output of
our classifiers is the total number of occupants in each
room/zone, which is an integer number. We used the open
dataset provided by researchers from the University of
Southern Denmark [8] to train and test our classifiers.

The use of CO2 sensors as input was motivated by the
availability of these type of sensors in many commercial
building installations. Although CO2 sensors have shown
to have several drawbacks, like long response time and the
dependency of location based on the space layout, lately,
with proper calibration, their accuracy and precision have
been increased in practice.

From our data set, we use data from 4 rooms from
a university building with approximately 1000 occupants
on normal workdays, data collected in the spring of 2017
for 15 days, with a temporal resolution of one minute.
In total, the data set has 21,600 readings per room for
each sensor, which means 259,200 records of 3 sensor
types: CO2 sensor that measures the levels concentration in
ppm, damper openness to represent the ventilation airflow,
coming from control system devices, and occupant counts.
Room identifiers have been removed due to the anonymity
requirements.

The modeling process starts with data profiling and
analysis, which is usually a time demanding phase. Al-
though the authors of [8] specified that data has been
cleaned, we performed a data summary and a visual



Fig. 1. CO2 data analysis

inspection tasks. Figure 1 shows a boxplot diagram for
CO2 concentration levels for the 4 rooms. This type of plot
is useful to asses some key characteristics of our dataset:
outliers, median values, data skewness.

Despite the fact that data does not have a normal
distribution and many outliers could be seen in this plot,
we checked the nature of these odd points and found them
valid points to be considered. According to the Labour
Inspectorate in Denmark a guiding index for values of
CO2 levels in classroom is recommended to be 1200 ppm
[22] and the maximum value for CO2 in the plot does not
exceed 1390 ppm, though a general drowsiness might be
felt at this level. Furthermore, we found that the values
greater than 1000 ppm represent only 0.96% from all the
records, 1000 being compliant even with the standards
developed by the American Society Of Heating, Refrig-
erating, and Air-Conditioning Engineers (ASHRAE) [23]
and the Occupational Safety and Health Administration
(OSHA). In addition, adverse effects may be expected
at concentration values bigger than 2500 ppm but lower
than 5000 ppm. The values for CO2 concentration in
classrooms should be checked for every country since its
upper limit of acceptance, not debating the comfort, is
regulated differently in different countries. This was the
only concerning parameter, because the damper position,
which is our second parameter/input, is mechanically
limited and controlled by the BMS. This visualization
points out that Room 2 and Room 3, which are the same
size present similar behavior, in contrast with Room 1
and Room 4. This difference can be explained in the last
column of Table I, because the number of occupants in
Room 1 is larger with 58% comparing with Room 4, at
peak usage.

The occupant counts are obtained from processed data
captured with PC2 3D stereo vision cameras and then
transformed to respect the individual identity and Eu-
ropean regulations, with the aid of Probabilistic Fusion
Algorithm; the results are considered ground truth due to
0.075 RMSE accuracy obtained.

Two of the rooms are teaching rooms and the other
two are study zones. Their specifications are presented in
Table I, where the actual maximum occupancy represents

TABLE I
SPACE DETAILS FOR DATA COLLECTION

RoomID Room type Size[m2] Capacity[seats] Actual max.
occupancy

1 teaching 139 84 67
2 study area 125 32 28
3 study area 125 32 35
4 teaching 139 84 39

the maximum number of persons observed in the room,
selected from the entire period of data collection.

The RF model is based on the bagging approach, which
means an average model for random samples; this way
variance reduction and over-fitting are avoided. Having
a training dataset as input X = {x1, x2, ..., xn} and a
testing dataset Y = {y1, y2, ..., yn} the RF model assumes
a training of a classification tree Tb on a sample with
replacement dataset from Xb and Yb with b = {1, ..., B}
where B is the number of the bagging repetitions. The
output of the algorithm is the ensemble of trees {Tb}B1 .
In the case of the classification task, the prediction for a
new unseen sample, x, is:

T̂B
rf (x) = MajorityV ote{T̂b(x)}B1 (1)

For the RF model, the Gini index (G) is used, as a less
computational complex metric, as criterion to decide splits
in dataset. This leads to finding the probabilities for each
class within the classification process:

G = 1− Σn
i=1(pi)

2 (2)

Visualization of how decision trees are working in the
RF, help to understand how the target variable is predicted,
in our situation, the number of occupants. We illustrate a
small tree in Figure 2 for data from the third room.

The RF model is built upon votes from the decision
trees from which it is made. For the root node, CO2 is the
variable to split the node on with 10,912 data points, also
called samples. On the second row of nodes, the ’Damper’
variable is used to make the split again. Because we
illustrate this example for Room3, we have 35 maximum
occupants, so we have 35 values in the ’value’ vector,
which is in conformity with the specifications from Table
I. Looking at the leaves row (the bottom line) in Figure 2,
on the left side, the first value from this vector is 7977, the
largest one in the array, which means class ’1’ (occupant).
Looking at the right side leaf, the maximum value in the
array named ’value’ is 139, which corresponds to class
’13’ (occupants count).

In the case of RF, we investigated the impact that the
feature selection we chose has on the algorithm perfor-
mance and its influence is presented in Table II. The
feature importance in Table II is for the case when the
algorithm ran with the entire dataset, split in two, with
20% data used for testing. Besides this, the number of
trees is set to 50, but we tested different values of different
orders of magnitude. Our results show that both features
have great importance for a good overall result, and when



Fig. 2. Decision tree in RF model

TABLE II
FEATURE SELECTION IMPORTANCE FOR RF

RoomID CO2 importance Damper openness importance
1 0.4823 0.5176
2 0.6188 0.3811
3 0.5344 0.4655
4 0.4929 0.5070

the room size is smaller (see Table I), CO2 concentration
has a slightly bigger influence than the damper openness
feature.

The K-NN classifier is based on a similar method to the
RF; k training points closest in distance to a given point
are used to get the majority vote among the k neighbors.

For the K-NN parameter tuning, we selected an array
of values for k and ran the algorithm along the range for
different rooms with different training and testing datasets.
The values of k are different for each room, and can be
significantly different in magnitude (e.g. 500 vs 2,500),
being dependent on the occupant behavior, as shown in
Figure 3. The k parameter is dependent on the room usage,
a pattern that is reflected on the value range that works for
Room3 but does not necessarily fit the tuning for Room1.
Thus, the tuning parameter step is not a straight forward
step since the k value should be tested intensively to find
how it impacts the accuracy of predictions.

Fig. 3. Parameter selection for k-NN

The k-NN algorithm was implemented using the Euclid-
ian distance, where p and q are two sets of data points:

d(p, q) =
√

Σn
i=1(qi − pi)2 (3)

We implemented the algorithms in Python using Pandas
and Scikit-learn libraries. The full dataset that we pro-
cessed is about 1MB, and the Pandas software framework
is suitable for our case, since it is very efficient with
time series data. For the RF algorithm, with 50 trees,
considering the case of the 4 datasets obtained with
window splitting method, the training time ranges from
0.11 seconds to 0.14 seconds for the 4 rooms; the same
dataset, with K set to 1000, the K-NN algorithm performed
the training phase in 0.02 seconds up to 0.07 seconds.
Due to minimum resources employed and an open dataset,
the entire use case presented in this paper can be fully
replicated.

Fig. 4. Data split using sliding window

IV. RESULTS AND DISCUSSION

In this section, we show the findings of our algorithms
after tuning RF and K-NN models, comparing their behav-
iors for several datasets across the 4 rooms, and discuss
the limitations of our study.

In our evaluation we worked on the custom data split
using a sliding window method similar to the one from
[13] to mimic natural behavior of temporal occupancy de-
pendence, considering 10 days for training phase for both
algorithms and 2 days for testing. Using this approach, we
obtained 4 datasets as shown in Figure 4.

In our evaluation, we use the following RMSE formula:

RMSE =

√
1

n
Σn

i=1(yactual − ypred)2 (4)

Figure 5 shows the occupancy ground truth and the
occupancy estimation predicted by both the RF and k-NN
model for one hour at 1 minute sample granularity. The
models were trained/tested with a split of 20% for testing,
with 50 trees for RF and k = 1000 neighbors for k-NN.



Fig. 5. Occupancy detection for Room4 using RF versus K-NN

TABLE III
RMSE AVERAGE VALUE FOR RF AND K-NN MODELS

RoomID RF RMSE K-NN RMSE
1 11.21 8.46
2 3.39 3.15
3 2.34 2.08
4 3.10 2.96

The second model achieved a slightly better performance:
4.03, whilst the first one only 4.13 in terms of RMSE.

Figure 6 illustrates the behavior of RF versus k-NN
models using the sliding method with the first 10 days as
training window and the next 2 days as testing window.
The number of trees remains set to 50 for RF, but the
parameter k is set to 2500. For the first half of the plot,
the horizontal line means that no occupants were in the
Room 1 for the first test day, which is a teaching room;
this could be explained with a weekend day. In this case,
again, K-NN returned better results than RF. With k =
2500, the RMSE value is 4.52 in this case and 5.1 for k =
2000, although for the case without sliding window split,
a smaller value for k indicated that RMSE value would
drop (see Figure 3).

Fig. 6. Occupancy count for Room1 using RF versus K-NN with sliding
window

Figure 7 shows the RMSE errors for the two models in
each of the 4 rooms using the datasets with the sliding
window split as shown in Figure 4, we presented the
evaluation with RMSE in Figure 7. We clearly see that
the RMSE tend to remain relatively small for rooms 2-4,
but tend to increase significantly for room 1. This is the
result of the sliding window split, which may not include

the cases of maximum occupancy in the training set when
doing the split.

Table III shows the average RMSE error for both RF
and K-NN for the different rooms. Overall, the K-NN
technique performs slightly better in all cases. When re-
normalizing the average RMSE error based on maximum
occupancy for each room (see Table I), we see that the
occupancy error varies from 5% to 16% depending on each
room. A basic observation of our results is that the larger
the actual maximum occupancy, the larger the expected
occupancy error, as it can be seen by the disparity of
the average RMSE results between room 1 (much higher
maximum occupancy) vs. the rest of the rooms.

Fig. 7. Sliding window dataset split evaluation benchmark for the 4
rooms

Although room temperature may increase the accuracy
of occupancy estimation, even without it, our results
still show that conditioning a room including schedules
based on estimated occupancy using K-NN models could
potentially reduce the overall energy consumption.

We believe that energy savings can be achieved in
part by not ventilating the room for maximum capacity,
but balancing the k-NN model occupancy output with
a safety guard band that is proportionally to the worst
case RMSE. For instance, if k-NN shows an occupancy
error of 10 persons over the ground truth in the worst
scenario, we could add a safety margin proportionally to
the RMSE in order to ensure comfort limits are still satisfy
in any case, but still remaining below the maximum room
capacity and producing energy savings. This is suitable
for lecture rooms or large office spaces where occupants
count is a large number, so estimation could float on a
bounding range around the actual occupancy without a
dramatic impact. Although this approach is suitable for
lecture rooms or other large similar spaces, testing of these
techniques to smaller spaces should be properly evaluated.

There are several limitations of our results that we
would like to point out. First, the data used comes from
only one season, spring, and a single city, hence we would
need further data sources to check if these techniques
generalize well under different conditions. Second, our
study could be improved with a section dedicated to
the accuracy of the CO2 concentration levels, which are
dependent on the sensor calibration and placement of
the sensor. Finally, considering the applicability of the
temperature and ventilation HVAC control, it is important



to distinguish between large zones/rooms occupied by
tens of users and small offices that tend to be occupied
by a very small number of users. This is important,
because in the zero-one occupancy boundary, there is a
discontinuity point in the design. The optimal decision
for an empty room is to let it float temperature wise in
order to save energy, but if the room has a single user,
the BMS must do temperature conditioning to satisfy user
comfort requirements. This means that the occupancy error
in our models would be too large to address this condition.
We believe that additional sensor types, like PIR sensors
commonly used for lighting control, could complement the
occupancy models we developed here in these situations.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented and evaluated two
supervised learning techniques to perform occupancy esti-
mation in commercial buildings based on readily available
existing sensors and data sources. By using data from
CO2 sensors and damper position for ventilation airflow
as input, and training both Random Forest (RF) and K-
Nearest Neighbor (K-NN) classifiers, we illustrate that
average RMSE occupancy errors between 3 and 11 oc-
cupants are possible, leading to occupancy errors between
5% to 16% of the maximum occupancy. We assessed the
validity of our results with a sliding window splitting
method that generalize well with the data for different
zones/buildings. In the future, we plan to integrate these
techniques with Model Predictive Control (MPC) schemes,
that would allow finer control of zone temperature and
ventilation levels based on estimated occupancy. This work
is the initial foray into data-driven modeling techniques
for building occupancy using existing building sensor and
data, that would pave the way for more efficient modalities
to perform HVAC control in commercial buildings and
balance the key trade-offs between energy savings and user
comfort.
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