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Abstract—The development of smart buildings and advanced
technologies such as Internet of Things (IoT) systems, smart
sensors and data analysis methods play a crucial role in achieving
a higher level of societal energy efficiency. The optimization of
energy consumption by evaluating the number of occupants in
buildings and assuring personalized comfort conditions requires
the integration of these technologies, promoting innovation in
building automation systems, through energy management and
control systems. The paper focuses on a detailed analysis of open
heterogenous building occupancy datasets from the perspective of
a robust data science pipeline. We introduce our methodological
contribution, mainly in the form of data pre-processing and
standardisation, for the analysis of diverse data types utilized
for occupancy estimation in buildings. The proposed algorithm
is based on an examination of timely open datasets containing
building sensor data, offering a well-informed reference for
occupancy estimation and forecasting algorithms.

Index Terms—building automation, exploratory data analysis,
data science, occupancy modelling, sensors

I. INTRODUCTION

Public statistic reports provide an overview of the important
role of buildings and their occupants in addressing global
environmental challenges. Overall, 36% of global final energy
consumption is jointly attributed to existing buildings and
building construction, as well as approximately 40% of total
direct and indirect CO2 emissions [1]. In 2050, the share of
space heating in the total energy consumption of buildings
will represent 48%, followed by others (25%), lighting (13%),
water heating (8%) and air cooling (6%) [1]. The topic of
optimizing energy consumption in smart buildings through
the personalized assessment of comfort conditions and the
number of occupants is of significant importance from var-
ious perspectives, including from the scientific, technological
and socio-economic point of view. Occupancy-based HVAC
(Heating, Ventilation and Air Conditioning) Control (OBC) [2]
takes into account actual and/or predicted indoor occupancy
in generating optimal setpoints for the low-level control loops
of the building automation system (BAS).

Analyzing the current state of knowledge related to the pro-
posed topic, several new developments on large-scale energy
monitoring inside buildings using complementary approaches
have been published. Also, in recent years, the number of
scientific articles studying the impact of occupant behavior and
building occupancy on the energy consumption of buildings
has increased, indicating a growing interest in the energy
efficiency of buildings focused on the human factor. The
current state of the art in this field involves the integration

of advanced technologies, data analysis and customized ap-
proaches to achieve energy efficiency while ensuring optimal
occupant comfort [3].

A driving factor in OBC implementations is the use of
sensor networks and Internet of Things (IoT) devices to
collect real-time data on various parameters such as tem-
perature, humidity, occupancy and lighting levels, as well
as information from wearables type devices such as smart
watches and smart rings. These sensors allow continuous and
personalised monitoring of comfort conditions and provide
valuable information for energy optimization [4]. In addition,
machine learning techniques are used to analyze the collected
data and develop predictive models for building occupancy
as well as models for energy consumption patterns. These
models can identify potential energy-saving opportunities and
provide customized adjustments to HVAC systems, lighting
controls, and other building automation systems, enhancing
comfort while minimizing energy waste [5], [6].

Our main contribution is defined with regard to the method-
ology for analysing various types of data used in accurately
modelling and predicting the occupancy in buildings. We
introduce a study of recent open datasets for building sen-
sor data, as informed reference that can be used by occu-
pancy estimation and forecasting algorithms. An additional
argument is that, given the heterogeneous characteristics of
these datasets such as, number and type of sensors, direct
and indirect measurements, experimentation environment and
others, robust techniques are required to bridge these in order
to increase the quantity of available quality training data for
subsequent data-driven machine learning algorithms. 1 The
rest of the paper is structured as follows. Section II frames
our contribution within the state-of-the-art with regard to
estimation of building occupancy. Section III presents the
conceptualised methods for data processing highlighting the
main issues in selecting the types of measurements and the
appropriate context along with the analysis of several public
data sets available for building occupancy modeling. The
availability of data sets in the challenge of detecting the
degree of occupancy in buildings is very important in the
creation of algorithms that use complex models, such as deep
neural networks, given that, in many situations the collection,
handling and pre-processing of data sets requires significant
time and computational resources resources. Main findings
are highlighted in Section IV through exemplification of the
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implemented methods. Section V concludes the paper with
outlook on future work.

II. RELATED WORK

Smart buildings have evolved through the use of Internet
of Things (IoT) systems for environmental monitoring and
automatic control of various functional subsystems. These
systems collect representative data on a high temporal and
geographical scale, allowing efficient operation of buildings.
An important aspect in this regard is the accurate detection
of occupancy in buildings, as a factor contributing to reducing
the energy consumption and associated emissions produced by
the building.

There are several ways to detect occupancy in buildings,
and advanced technologies are used for this purpose. One
of the common indirect detection methods is the use of
environmental sensors, which can provide information about
the presence of humans in a certain area. These sensors can
detect motion, light, temperature and CO2 levels and can
feed data for neural network training to learn and detect
occupancy [7], [8], [9]. The use of indirect sensing is also
motivated by the fact that these systems do not raise problems
related to the user’s confidence, reliability and privacy. In
addition, to maximize the precision of detection in real time,
the systems that combine environmental sensors and neural
networks present the advantage of reduced execution time and
more efficient use of memory.

Table I summarizes some of the studies in which data
collection from environmental sensors was conducted, with
the ultimate goal of predicting the number of occupants.

In previous works we have presented an analysis of deep
learning model prediction performance for building occupancy
estimation [12] and investigated the relative performance of
machine learning (ML) techniques such as random forests
compared to deep learning techniques (mostly convolutional
neural networks) for the same task [13]. In order to improve
the performance of such model, this current work tries to raise
input data quality and availability for building such robust
models.

III. METHODOLOGY

Occupancy modelling and prediction applications involve
several stages, as can be seen in Figure 1. Even though model
selection is typically considered as the most important stage,
we argue that data (pre-)processing also requires significant
attention for good robust performance. Thorough data process-
ing leads to appropriate inputs into the predictive model, and
together with a high-performing model, the prediction results
will be satisfactory.

Data processing involves multiple levels: data cleaning, data
reduction, data dividing, data balancing and data splitting,
which are subsequently discussed in detail.

A. Data Cleaning

One of the most common issues encountered with open
datasets is the absence of information at certain moments.
Missing values can be caused by a variety of factors, such as
faulty sensors, human error, or data corruption. These missing
values need to be identified and either imputed i.e. filled in
with a suitable value, or removed altogether from the dataset.

Because filling in missing values is generally quite challeng-
ing as the values around it needed to be analyzed to determine
the missing value, the implemented pre-processing algorithm
removes the entire measurement where information is missing
from sensors. This is possible if there are few missing values,
and the dataset is large enough not to be affected.

Another issue that can arise during data collection is the
presence of identical measurements. Duplicate values can
occur due to errors in data collection or data entry. These
duplicates can introduce biases and distort the analysis or
modeling process. Identifying and removing these duplicates
can help improve the accuracy of the dataset. This can be
achieved through various techniques such as record compar-
ison or automated algorithms. Since this problem is time-
consuming because it compares each entry, our system has
not yet implemented an algorithm of this type.

Data cleaning also involves identifying and handling outliers
in the dataset. Outliers are data points that are significantly
different from other data points in the dataset. Outliers can
occur due to measurement errors, incorrect data entry, or
rare events. Identifying and handling outliers is important to
avoid them having an undue influence on the analysis. One
idea for identifying them is to generate plots of each of the
measurements in the dataset, thus showing the extremes of
each type of sensor.

Datasets can naturally contain values from environmental
sensors with different scales. For this reason, value scaling
is necessary for such an approach. Also, data collected from
different sources can have different scales and units, which can
make it difficult to compare or analyze them. Standardising the
data by transforming it to a common scale or unit can help
improve the consistency and comparability of the data.

The last issue discussed during the data cleaning process
is the conversion of data with wrong formatting. Sometimes
the data may be in the wrong format, such as numeric data
recorded as text, or dates recorded in the wrong format.
Converting the data to the correct format can help ensure that
it is usable for analysis. Another type of conversion could be
when attempting different types of datasets that have a slightly
different structure. For example, in the public datasets used,
there is exact information about the number of occupants, but
to use the dataset in the proposed algorithm, the exact number
of occupants has been converted to occupancy classes.

B. Data reduction

The algorithm used in this level is reducing the raw dataset
by extracting measurements at a specific step. This idea is very
straightforward, but it comes with an issue: you cannot choose
which measurements to keep. To avoid losing information that
is skipped during the reading step, a weighted average of
the values in the skipped interval can be calculated. Instead
of considering only one value at a certain step, a weighted
average is calculated from the values of the passive sensors.
Weighted average can be chosen experimentally, either linear
or sinusoidal.

In the preprocessing algorithm constructed, linear, sinu-
soidal and cosinusiodal weighted average were attempted
using the formulas (1):

LWA =

∑N
i=1 Si ·Wi∑N

i=1 Wi

(1)



TABLE I
THE RELEVANT INDOOR ENVIRONMENTAL QUALITY FACTORS AND CORRESPONDING STUDIES

Study Title IEQ Factor Measured Parameters Device

Indoor Environmental Quality Assessment and Occupant
Satisfaction, 2022 - [10]

Thermal Comfort Temperature HOBBO
Relative Humidity HOBBO

Indoor Air Quality PM2.5, PM10, CO2, TVOCs Air Mentor Pro
Lighting Quality Lux Level Precision Gold Environment Meter

A high-fidelity residential building occupancy detection
dataset, 2021 - [8]

Thermal Comfort Temperature Aosong DHT22
Relative Humidity Aosong DHT22

Indoor Air Quality CO2, TVOCs Sensirion SGP30
Lighting Quality Lux Level Avago APDS-9301

Accurate occupancy detection of an office room from
light, temperature, humidity, and CO2 measurements using
statistical learning models, 2016 - [11]

Thermal Comfort Temperature DHT22
Relative Humidity DHT22

Indoor Air Quality CO2 Telaire 6613
Lighting Quality Lux Level TSL2561
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Fig. 1. The stages of a building occupancy modelling and prediction system

Where LWA is the value of weighted average method that
will be used at training and validation model, N is the read
step from the raw dataset, Wi is the weight value (the number
of weights are selected in a stepwise manner) and Si is the
value of each sensor type [14].

The difference between the averages mentioned above is
how the values of the weights are computed. For linear
weights, the values were calculated using the random function
on the interval [0; 10], followed by sorting the values. For
the rest of type weights, the values were calculated using the
uniform random function on the interval [0, π] – sinusoidal
and [-π/2; π/2] – cosinusiodal, followed by applying the sine
or cosine function to these values (formula 2 and 3).

Wsin = sin(random(0, π,N)) (2)

Wcos = cos(random(
−π

2
,
π

2
, N)) (3)

Where Wsin and Wcos are the weight values used and step is
the reading step from raw dataset.

Reducing the dataset is only possible if it contains a very
large volume of measurements, and training and evaluating
the network would require a significant amount of time and
computational resources.

C. Data dividing

Data dividing involves splitting it into fixed-length se-
quences. A neural network that receives sequences of data can
be trained so that the evolution of the values collected from
the sensors has a greater impact.

Splitting the input into smaller sequences for a neural
network impacts memory management and enables training on

smaller batches and parallel processing, enhancing overall effi-
ciency. This approach is valuable for handling long sequences
and simplifying the model’s complexity.

In our application, the sequences were created based on a
sliding window that contains 60 measurements and a duration
of 15 – 20 minutes. For example, the first sequences were
created with the following measurements: 0 – 60, 1 – 61, 2
– 62, 3- 63, etc. The process of sliding window can be better
understood by exemplifying a sequence of 7 measurements in
figure 2. Each number represents the values from the sensors
for a measurement.

Fig. 2. Sliding window mechanism

The dataset must contain consecutive time data, for example
if the difference time between two values is one hour, the
algorithm will automatically create a new sequence starting
from that value.

Another criterion used in dividing the data into sequences
is the minimum number of measurements per sequence. When
the current sequence ends due to a large time difference
(one hour) and a new sequence begins, the length of both
sequences can be smaller than the predetermined size of 60.
Therefore, we have set a minimum number of measurements



per sequence, which is equal to three-quarters of the maximum
size:

Minseq = (max sequence ∗ 3)/4 (4)

For a sequence with 60 measurements, the minimum num-
ber is equal to 45 measurements.

D. Data balancing

The next pre-processing step that has been performed and
has a significant impact is balancing the dataset. If there are
significant differences between the number of sequences in
each prediction class: Empty, Low, Medium and High, the
accuracy of the trained model can be influenced by these
differences or there may be an overfitting problem where the
model is trained more on a single class. The algorithm for
balancing the dataset is the following:

• Compute the minimum (Minseq) between the sequence
sizes of the four prediction classes.

Minclass = Min(SeqE , SeqL, SeqM , SeqH) (5)

• Compute the new sequence size for the classes that are a
size very high compared to the minimum class size. Every
new size is computed randomly based on an interval
chosen experimentally: the lower value is 1 and the upper
is 4, as it is also in the formula 6.

Lengthclass = int(random(l∗Minclass, h∗Minclass))
(6)

E. Data splitting

The final step in pre-processing the datasets consists of
dividing the dataset into train, validation and test, thus suitable
to the modelling stage through machine learning algorithms.

In general, before the actual occupancy estimation algo-
rithm, the dataset is divided into training the network, another
part is used for testing it, and the final part for validating the
neural network. The largest volume of data is sent for training,
specifically 60% of the dataset, while testing and validation
have the same volume of data, which is 20%.

These percentage values should be carefully chosen so that
there are enough data for training the network, as well as for
testing and validation. After splitting the data, we have chosen
to write them into a CSV file, making it easy to visualize them.

IV. RESULTS

For the practical evaluation, the algorithms for pre-
processing were implemented using the Python programming
language, along with various specialised software libraries:
datetime - for date and time conversion, os - useful functions
for interactions with the operating system, json and csv - for
parsing and reformatting structured data.

The reference code implementation is available on Github2

for testing the processing and replicating the presented results.
The main step of the work involves processing raw data before
using it in neural network models that predict occupancy levels
in buildings, such as cleaning, reduction, balancing, dividing
and splitting. The datasets used are from Jacoby’s work [8],

2https://github.com/gmcretu/IEEE EnergyCon2024

which includes measurements from six residential houses. In
each house, three to five hubs are installed, through which
information about temperature, pressure, light, CO2 concen-
tration, volatile organic compounds, and occupant presence is
collected.

Pre-processing was required so that they could be used as
inputs to the occupancy prediction app in buildings. The raw
data is organized on 2 types of ”.csv” files according to the in-
formation contained: the number of occupants, respectively the
measurements from the environmental sensors. Pre-processing
consists of extracting information of interest from “*.csv” files
and converting certain measurements. The conversion of the
information about the actual occupancy was made as follows:

• For 0 occupants the classification “empty” was chosen;
• For 1 occupant was chosen classification “low”;
• For 2 occupants the classification “medium” was chosen;
• For 3, 4 or 5 occupants the “high” classification was

chosen.
The ”*.csv” files were created based on the day when the

measurements were taken, so each day of each apartment,
among the six included in the study, corresponds to a file.
Since the data contained in a single file, representing a single
day, would have been too small, and predicting occupancy
levels from such limited data could lead to subjectivity (over-
fitting), a script was created. This script can combine multiple
files, either creating datasets from multiple days or datasets
from different areas within the apartment. For example, com-
bining the hub positioned in the living room with the one in the
kitchen can expand the coverage area, avoiding data overlap.
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TABLE II
DATASET PROPERTIES

Dataset Timestep [s] Data Splitting Examples per occupancy class
2019-12-16-21-RS123-H1 20 train:26671, test:8895, valid:8890 ’empty’: 13311, ’low’: 8046, ’medium’: 8586, ’high’: 14513
2019-12-09-14-RS14-H1 20 train:28866, test:9625, valid:9621 ’empty’: 14079, ’low’: 11830, ’medium’: 6522, ’high’: 15681
2019-11-26-02-RS245-H1 20 train:29531, test:9848, valid:9842 ’empty’: 13974, ’low’: 8886, ’medium’: 11734, ’high’: 14627
2019-12-07-14-RS135-H1 20 train:49439, test:16483, valid:16479 ’empty’: 21116, ’low’: 23160, ’medium’: 10308, ’high’: 27817
2019-08-31-04-RS345-H3 20 train:26432, test:8815, valid:8809 ’empty’: 10242, ’low’: 7524, ’medium’: 7113, ’high’: 19177
2019-08-30-04-RS215-H3 20 train:25949, test:16223, valid:22704 ’empty’: 11619, ’low’: 9585, ’medium’: 8919, ’high’: 34753
2019-05-05-09-RS345-H4 20 train:32378, test:10796, valid:10792 ’empty’: 17220, ’low’: 22578, ’medium’: 7895, ’high’: 6273

TABLE III
ACC AND LOSS AFTER CLEANING, REDUCING, DIVIDING AND SPLITTING (60%, 20%, 20%), AND BEFORE BALANCING

Data No Examples CNN CNN-FC CNN-LSTM
A L A L A L

2019-12-16-21-RS123-H1 64625 0.8647 0.4273 0.8490 0.5029 0.8396 0.5019
2019-12-09-14-RS14-H1 51722 0.9534 0.1254 0.9662 0.0827 0.9702 0.0814

2019-11-26-02-RS245-H1 90545 0.9013 0.2615 0.9206 0.2149 0.9144 0.242
2019-12-07-14-RS135-H1 103505 0.9099 0.2527 0.93073 0.2120 0.9037 0.2679
2019-08-31-04-RS345-H3 64625 0.9658 0.0945 0.9562 0.1115 0.9678 0.0940
2019-08-30-04-RS215-H3 77585 0.9059 0.2525 0.8863 0.3002 0.8958 0.2949
2019-05-05-09-RS345-H4 64568 0.7977 0.5349 0.75814 0.6889 0.8042 0.5349

TABLE IV
ACC AND LOSS AFTER CLEANING, REDUCING,BALNACING, DIVIDING AND SPLITTING (45%, 35%, 20%)

Data No Examples CNN CNN-FC CNN-LSTM
A L A L A L

2019-12-16-21-RS123-H1 44456 0.8009 0.7558 0.8095 0.5984 0.8149 0.7392
2019-12-09-14-RS14-H1 48112 0.9794 0.0707 0.9823 0.0500 0.9762 0.0753
2019-11-26-02-RS245-H1 49221 0.9092 0.2717 0.9276 0.2091 0.9132 0.2636
2019-12-07-14-RS135-H1 82401 0.9060 0.2542 0.9154 0.2390 0.9034 0.2672
2019-08-31-04-RS345-H3 44056 0.9504 0.139 0.9622 0.1048 0.9491 0.1410
2019-08-30-04-RS215-H3 64876 0.8915 0.2910 0.9108 0.2559 0.8887 0.3138
2019-05-05-09-RS345-H4 53966 0.8259 0.4986 0.7987 0.5434 0.8153 0.4778

TABLE V
ACC AND LOSS AFTER CLEANING, REDUCING, DIVIDING AND SPLITTING (60%, 20%, 20%), AND AFTER BALANCING

Data No Examples CNN CNN-FC CNN-LSTM
A L A L A L

2019-12-16-21-RS123-H1 44456 0.9369 0.1724 0.9279 0.1873 0.9219 0.2157
2019-12-09-14-RS14-H1 48112 0.9826 0.0520 0.9860 0.0432 0.9823 0.4960
2019-11-26-02-RS245-H1 49221 0.9160 0.2354 0.9338 0.1945 0.9235 0.2217
2019-12-07-14-RS135-H1 82401 0.9197 0.2228 0.9248 0.2086 0.9245 0.2219
2019-08-31-04-RS345-H3 44056 0.9549 0.1233 0.9706 0.0804 0.9719 0.0834
2019-08-30-04-RS215-H3 64876 0.9126 0.2430 0.9164 0.2190 0.9091 0.2467
2019-05-05-09-RS345-H4 53966 0.8339 0.4251 0.8227 0.49060 0.82197 0.4344

The figures that have been created are in the form of box
plots, and highlight the values from each environmental sensor
(temperature - Figure 3, humidity - Figure 4, light - 5 and
CO2 values - 6) and their relation to the ground truth i.e.
number of occupants. With the increase in the number of
occupants, a slight increase in temperature, humidity or CO2
concentration value is also observed, the Figure 7 presenting
the same idea. This observation highlights the direct impact
of human activities on the environment inside buildings.
Therefore, the generation of heat and humidity associated with
the presence of more people leads to significant adjustments
of ambient conditions. Also, increasing the CO2 level may
indicate the need for the use of ventilation and air conditioning
appliances. By analysing these changes, you can gain a clearer
understanding of how employment affects the environmental

conditions in buildings and provide guidance for optimizing
them according to the needs of users.

Additionally, Table II provides an overview after the data
processing stage of several datasets used, including the number
of train, validation and test entries for each set, the timestep,
and the distribution of entries relative to the type of occupancy
class.

To exemplify the importance of data processing, we trained
and evaluated multiple datasets with and without different
stages of processing. One of the stages is Data Balancing,
Tables III and V presented the accuracy results and loss
function with and without this stage. An increase in accuracy
is observed, especially for datasets with an accuracy lower than
90%, while for datasets with 95% accuracy, the difference is
minimal. This demonstrates that processing can help increase



metrics with low values, as expected results. Another stage
is Data Splitting, the comparison between different values of
the splitting being presented in Table IV and Table V. Two
different sets of ratios, namely [45%, 35%, 20%] and [60%,
20%, 20%], were employed for dividing the data into training,
validation, and testing subsets. This comparison underscores
the importance of the training dataset size, as discussed in
Section III.
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Fig. 7. The number of occupants vs environmental sensors

V. CONCLUSION

The presented work aims to improve the pre-processing
stage in a data-driven modelling pipeline for building oc-
cupancy prediction. It has been argued that through better
processing and understanding of the input variables, improved
forecasting accuracy and robustness of the prediction models

can be achieved. The impact of improved data quality for
accurate forecasting models, in turn, will lead to higher energy
savings in future smart buildings with a direct impact on grid
energy management supporting a sustainable energy transition.
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