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Abstract—Modern measurement and automation equipment
for energy systems collect, store, process and communicate ever
increasing quantities of raw data which can be used to build data-
driven prediction and classification models. Directly using these
large and unprocessed data sets can be inefficient especially in
imbalanced class problems, where the positive class is sparsely
represented in the training examples, such as classification of
micro-scale transients. This is due to the longer time required for
model training, and due to the increased possibility of obfuscating
the useful information behind noisy readings. The matrix profile
represents a computationally efficient and general purpose time
series data mining technique which is suitable for embedded
deployment in future generation smart meters, and in embedded
energy gateways. Our analysis concerns the application of this
technique on two types of residential electric power measurement
data sets: a detached single family house and an apartment, with
variable reporting rate and subsequence size parametrisation.
Quantitative results support the findings that such approaches
serve as practical instrument for measurement time series pre-
processing in energy analytics.

Index Terms—data analytics, feature extraction, power mea-
surements, time series, pre-processing

I. INTRODUCTION

Traditionally, the power distribution grids were passive by
design and no real-time monitoring was required for their oper-
ation. However, the expansion of distributed energy resources
(DER), especially of renewable sources (RES), together with
significant changes in the power profiles of the loads, and
expected increase of ad-hoc loads such as electric vehicles,
are currently requesting for deployment of advanced metering
infrastructure at this part of the grid [1]. Furthermore, en-
hanced situational awareness is needed for flexible and optimal
operation of the current active distribution grids which might
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incorporate several types of actively controlled entities, such
as energy communities [2], microgrids, large charging stations
on top of the now classical flexible loads and DER [3]. Next
generation smart meters (SM) [4] or micro phasor measure-
ment units (PMUs) [5] are among the advanced metering
technologies able to provide high resolution measurements
needed for plethora of applications in active distribution grids
and smart grids [6]. However, transmitting, processing and
analysing these measurements in the raw format, in a central
location might be costly, impractical as well as raising privacy
concerns [2], [7].

Multi-scale data analytics is an emerging research field
which integrates multiscale modelling [8] with multi-scale
computing software [9] in several fields of science and engi-
neering, especially for measurements and sensors data coming
at different scales. The later helps organizing and store large
sets of data in a distributed fashion such that to efficiently
exploit and to further apply analytics algorithms on those
large data sets, such as multi-scale computing patterns [10],
or workload characterization for performance efficiency [11],
among many other applications.

Measurements, coming from several types of advanced me-
tering infrastructure, sensors or distributed embedded systems
with more and more increasing sampling rates are especially
sources of such type of large data sets for power industry
applications [5], [4]. Data-driven predictions and classification
models are among the machine learning techniques used to
extract useful information from high reporting rate metering
infrastructure [12]. However, one of the major challenges in
this type of solutions is related to imbalanced class problems,
where the positive class is sparsely represented in the training
samples [13]. This might be the case for anomaly classification
models of power consumption in residential locations [14].

Matrix profile is a data mining technique often used in



pre-processing of large time series archives, aiming for fast
anomaly detection, classification or labelling of continuous
streams of newly arriving data [15]. One of the main advan-
tages of this technique is that it requires low computational
resources and it could be easily implemented in distributed
low power energy gateways, such as advanced smart meters.

Previous contributions relating to MP implementation and
energy data have been illustrated in [16], [17], [18] which were
mostly focused on building energy data with low sampling
resolution of 15 minutes and one hour, respectively. This
normally cancels many subtle events and anomalies through
averaging when focusing on micro-transient regimens in high-
sampling rate measurements for power system state estimation.
In [19] the objective has been to assess the performance of
deep learning forecasting models on power measurements data
in terms of various accuracy metrics: Mean Squared Error
- MSE, Mean Absolute Error - MAE and Mean Absolute
Percentage Error - MAPE, and computational performance at
various reporting rates. Our intuition is that a combination of
suitable measurement data pre-processing, and feature extrac-
tion with state-of-the-art data-driven models based on hybrid
convolutional-recurrent neural networks with multiple layers
may result in robust models for various applications in energy
systems.

To this end, the major contributions of this work are:
• application of the Matrix Profile (MP) time series data

mining technique for efficient information extraction from
smart meter power measurements;

• comparative results analysis on two residential use cases,
single family home and urban apartment, at various
timescales;

• discussion on the usage of the extracted features and
reduction in the time series representation in a learning
framework for steady-state/rvc classification aiming to
reduce teh needed computational effort.

Subsequently, we discuss in detail the Matrix Profile (MP)
technique in Section II and its application for our energy
measurement scenario, along with the available datasets. Sec-
tion III focuses on a gradual discussion of implementation
and results obtained to illustrative the comparative analysis.
Section IV presents the conclusion and outlook on future work.

II. METHODS AND DATASETS

Building time series data structures involves associating
information on the physical parameters, provided by mea-
surements with reliable time-stamps, using - in most cases
- uniform sampling. From the perspective of building data-
driven models using machine learning and analytics methods,
this type of data includes information both in the actual mea-
surement data, and in the association between the measurement
data patterns and their occurence in time. The latter can be
used to encode both short-term and long-term dependencies of
the underlying monitored phenomenon or process in the model
parameters at the training stage. By combining the analysis
of recorded data with suitable pre-processing techniques an
adaptive system can be achieved that balances accuracy against

computationally efficient (re-)training while limiting the inher-
ent noise in large unbalanced datasets used for training. Pre-
processing by means of feature extraction and feature selection
allows for early pattern discovery and focusing on particular
segments of the input data. Popular methods for these tasks
such as principal component analysis (PCA) and singural value
decomposition (SVD) are well documented in the technical
literature and can represent complementary alternatives to MP.

A. Matrix Profile for Time Series Data Mining

Matrix Profile (MP), initially proposed by [15], represents
a vector of values, computed by sliding a window of size m
over a time series T of size n. Each value in the vector stores
the minimum z-normalised Euclidean distance to its neighbors.
The use of the Euclidean distance d:

d (Ta, Tb) =

√√√√ n∑
i=1

(Ta,i − Tb,i)2 (1)

where Ta and Tb are two subsequences of equal length
and Ta,i and Tb,i are the i elements in the respective sub-
sequence, ensures efficient computation, preceeded by the z-
normalisation which enables comparable results across var-
ious absolute values. Robustness of the method can be as-
sessed by adding synthetic noise traces to the original input
time series and quantifying the resulting profiles. Several
open-source software implementations: python matrixprofile,
stumpy, MATLAB library, and various algorithms: scrimp,
scrimp++, stomp, mpx, can be used to compute it for both
offline and online usage on streamed data. In this case the new
values are gradually incorporated into the resulting profile by
sliding the analysis window further, without recomputing the
full spectrum of distances.

One advantage of MP lays is the fact that it uses a single
parameter for tuning: the subsequence length m, which in our
case of analyzing residential active power measurement values
can be related to pre-observed daily consumption and appli-
ance use patterns in clusters of homes. Alternatively, several
automated and visual inspection procedures are available to
identify the optimal subsequence length for a given time series.

Three main features of the technique are leveraged in this
work, as follows:

• Derivation of the daily MP vectors for the residential ac-
tive power measurement data for comparing smart meter
traces in conjuction with apriori domain knowledge;

• Identification of measurement time series motifs, as re-
curring patterns within the measurement time series;

• Identification of time series discords, as highly dissimilar
measurement time series patterns which can signal an
anomaly for control purposes.

As discussed in [16], given time-series T , two subsequences
of length m, {Ta,m, Tb,m} are considered a motif pair if:

dist(Ta,m, Tb,m) ≤ dist(Ti,m, Tj,m), (2)

∀i, j ∈ [1, 2, ..., n−m+ 1] with a 6= b, i 6= j.



The subsequence with the maximum distance to its nearest
non-self match neighbor can be interpreted as an unusual
subsequence or anomaly and is denoted as a discord. Given the
time-series subsequence Tc,m of length m non-self matched
with Td,m and the subsequence Tp,m, non-self matched with
Tq,m, Tc,m we label a discord if:

min(d(Tc,m, Td,m)) > min(d(Tp,m, Tq,m)), (3)

with c 6= d, p 6= q and d a z-normalized Euclidean distance
function.

B. Description of the two datasets and measurement context

It is recognized that residential customers have a large
variability in their electricity use e.g. short periods of time
with peak demand and lower demand during most of the
time during the day. Despite this, most of network impact
studies for RES at LV grid still rely on hourly aggregated
load or, in the best case, on 15 minutes data aggregation.
It is acknowledged in [20] that near real-time information
and data communication is a critical technical requirement for
the operation of LV grids. To highlight the energy analytic
approach of pre-processsing active power time series, for the
energy consumption side, it has been made use of 1s-reporting
rate load profiles derived from high reporting measurements
using the so-called Unbundled Smart Meter (USM) concept
[21], required for achieving an optimal operation of the
proposed emerging system. We have collected two datasets
of residential energy meters over the course of several weeks
as experimental deployment. The first dataset represents a
single-family house, while the second is an apartment dwelling
from Bucharest, Romania. Data has been collected in shoulder
season, corresponding to the month of September 2021 and
2020 respectively, which has a neutral impact on the observed
patterns through the absence of considerable cooling and/or
heating loads.

Figure 1 illustrates the daily active power profile derived
from measurements provided by a three phase smart meter
installed in the house, with raw data made available every 1
second. A similar pattern is presented in Figure 2 with the dif-
ference being that, in this case, the power profile is obtained by
mediating the raw data on a 900-samples window, equivalent
with linear aggregation over the 15 minute reporting interval,
thereby obfuscating both noise and potentially relevant signal
variability.

III. RESULTS

We present the results of the analysis using the MP tech-
nique on the above mentioned datasets. The implementation
has been carried out using the Python programming language
and the open source matrixprofile1 library. The library provides
software methods to analyze, compute and visualize the profile
of the input time series. A pan-matrix profile data structure is
also provided that allows the selection and review of multiple
MP records, useful for comparing various parametrisation

1https://github.com/matrix-profile-foundation/matrixprofile

Fig. 1: Daily power profile from measurements with 1 frame/s
reporting rate -example

Fig. 2: Daily power profile from emulated meters with 4
frames/h reporting rate, using linear averaging

options such as: window size, noise levels, type of algorithm.
We use Google Colab as online development environment.

In Figures 3 and 4 the MP values vector for each of the two
daily power measurement traces introduced in the previous
section are illustrated. The most suitable time window is
automatically calculated for each of the examples.

In each figure, the red point marks the location of the
top level discord i.e. the most dissimilar subsequence in
the original data. One salient observation is that, for the 1s
sampled data, a brief power spike is identified in the evening
of the respective day. In the second situation, when processing
15 minute averaged data, the brief spike is eliminated through
averaging and thus the MP procedure then marks an earlier
and wider spike of power. This can be extended to the top
n discords that mark multiple anomalies in the data which
can be analyzed through deeper inspection of the original
measurement sample subsequences.

In addition a heatmap profile is shown on top of each figure
with lower (blue) values in the second part of the morning,
after a brief period of increased values (orange). In this case,
the rectangular patterns at the beginning of the day for both
examples are labeled as time series motifs e.g. corresponding
to the sole periodic power draw of a home appliance such
as a refrigerator in the absence of other consumers in an
unoccupied house.

A histogram showing the overlayed empirical distributions
of the matrix profile values for the two cases is presented
in Figure 5. Clustering and thresholding MP values can
point out areas of interest in the original time series where



Fig. 3: Matrix profile for daily power measurements trace (1
frame/s reporting rate)

Fig. 4: Matrix profile for daily power measurement trace
(averaged)

appropriate measures can be taken with regard to the adaptive
(increased) sampling of the measurement and control actions.
z-normalisation of the time series ensures comparability across
multiple domains. The higher MP values for the second power
measurement time series can be explained though the steeper
changes on sparser discrete power levels produced during the
averaging procedure.

Fig. 5: Empirical distributions of the MP values

Data structure representation of the analysis function for a
single MP vector computation is presented below, correspon-
ing to the 1s sampled measurements. It allows programmatic
access to both the input values and the computed profile
values and also records the parametrisation options during the
procedure. In this case the mpx algorithm corresponds to a fast
implementation of the MP that does not use the Fast Fourier
Transform (FFT).

{’algorithm’: ’mpx’,
’class’: ’MatrixProfile’,
’data’: {’query’: None,
’ts’: array([341.99, 341.99, 341.99, ...,

296.44, 296.44, 296.44])},
’ez’: 0,
’join’: False,
’lmp’: None,
’lpi’: None,
’metric’: ’euclidean’,
’mp’: array([34.81832531, 34.80253447,
34.786677 , ..., 32.89044937,

32.88824545, 32.88603246]),
’pi’: array([ 360, 361, 362, ...,
6774, 6775, 6776]),
’rmp’: None,
’rpi’: None,
’sample_pct’: 1,
’w’: 1324}

We further include the apartment dataset in the analysis.
Figure 6 presents one days of active power measurements for
each of the residential dwellings, taken during the same day
in September. A lower baseline power consumption can be
observed as well as narrower consumption peaks. In the middle
of day an unusual pattern is represented which can correspond
to a particular appliance. This can thus be considered as a
potential candidate for flagging of anomalous behaviour.

Fig. 6: Daily active power measurements: house and apartment

The corresponding MP vectors are illustrated in Figure
7. We observe a larger variability in the apartment profile
corresponding to larger minimum distances between the sub-
sequences of the values which can be explained through a
large amplitude of the changes relative to the lower baseline.
The motif pattern which has been previously observed is not
replicated in this second dataset given several spikes in the
data at the beginning of the series.

Fig. 7: Comparative profiles between two dwellings



The robustness of the method is tested by leveraging
the ’add noise’ parametrisation option for evaluation of the
computed profiles. We validate the fact that by inserting
Additive White Gaussian Noise (AWGN) to the original time
series the fundamental shape of the profile for the same
window size does not change. The standard deviation σ =√

1/n
∑

(xi − x̄)2 with and n the number of samples is
computed and presents similar values for both series.

In the case of the pan-matrix profile, where the MP vector
is computed for various subsequence length on the averaged
data from, the differences are shown in Figure 8. The data
has been decimated for tractable computation and the window
size ranges from 1 to the full length of the decimated series
(8640). This stands to validate the fact that on flat surfaces
noise has a disproprotionate effect on the MP values. In this
case the noise has been added to averaged data set. The denser
colored areas in the figure show the similarity of the motifs
detected for various subsequence lengths. The lighter colored
areas show that the motifs are not replicated across matrix
profiles computed at different window sizes in the presence of
noise, while they are fairly consistent across multiple values
of the window size in the original data. The effect of noise is
amplified for short subsequences.

(a) Original Data

(b) Original Data with Noise

Fig. 8: Effect of noise on Pan-Matrix Profile Data Structure

IV. CONCLUSION

The MP technique serves as a robust tool for pre-processing
and feature extraction in a data analytics framework for mea-
surements in the energy domain. Given the efficient compu-
tational performance and multiple options for implementation
MP is a reliable tool in a machine learning pipeline. An impor-
tant characteristic is also the fact that exactness can be traded
off for speed by choosing a faster yet inexact algorithm for
computation. This can be useful on extremely high reporting
rates encountered in current and future advanced metering
technologies. An optimisation problem can be thus formulated
to dynamically adjust the processing parameters according to
the dynamics of the underlying process. Future work is focused
on validating the approaches presented at scale and testing the
implementation on embedded edge devices on online collected
power measurements data. Bootstrapping time series labels for
transient analysis can present a relevant use case.
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