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Abstract—Flexible manufacturing systems (FMS) have the
potential to increase efficiency and adaptability in manufacturing
which results in both economic gains as well as support future
environmental and social sustainability. However, the continuous
optimization of such systems remains a challenging task due to
the trade-offs between flexibility and production efficiency under
increasing cost pressures. This work presents an enhanced design
and development approach for flexible systems of fabrication
that takes into account these trade-offs. Our approach is based
on a combination of simulation and optimization techniques,
and it has been validated through experiments on a real-world
flexible system of fabrication with state-of-the-art components
and tools for Industrial Internet of Things (IIoT) and Industry
4.0/5.0 paradigm integration. The presented results demonstrate
the effectiveness of our proposed approach in conjunction with
reference performance metrics such as the Overall Equipment
Effectiveness (OEE) and the power consumption.

Index Terms—flexible manufacturing system, efficiency, sus-
tainability, industry 4.0, industry 5.0

I. INTRODUCTION

The continuous evolution of technology and the develop-
ment of smart manufacturing processes constantly bring upon
new challenges for which the most innovative software solu-
tions are needed. However, the optimization of such systems
remains a challenging task, as it requires a balance between
the flexibility of the system and its production capabilities.
With the emergence of the concept of Industry 4.0, advanced
technologies such as Artificial Intelligence [1], Internet of
Things, Cloud Computing, Artificial Vision began to appear
more and more often in automation solutions in manufactur-
ing systems. Key elements include the accelerated adoption
of pervasive and distributed monitoring and control systems
and hierarchical data processing over multiple communication
networks.

Industry 5.0, as defined by the European Union [2], supports
the EU green and digital transition with a human centric
approach that aims to bring the worker back at the core of
the production system. It presents a complementary view to
Industry 4.0, focusing on key terms such as sustainability and
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resilience. Sustainability refers to covering present needs while
balancing growth imperatives with long term economic, social
and environmental support of future generations. In particular,
manufacturing resilience refers to the ability to overcome and
recover from unexpected disruption of production, demand and
supply, while assuring business continuity and meeting the
needs of an extended group of stakeholders such as business
owners, employees and customers.

Before such advanced technologies can be effectively in-
tegrated into industrial manufacturing systems, they must
comply with the principles of Industry 4.0, more precisely
to allow the interconnection of equipment, sensors, devices,
this is done using specific communication protocols, allow
information transparency and technical assistance, i.e. data
collected and delivered from sensors and field equipment to
support maintenance by visualizing the data in a simple and
easy-to-understand manner. The last principle provides for
decentralized decision-making, that is, the ability of systems
to make decisions that solve problems autonomously.

In this work, we propose the optimized design and eval-
uation of a flexible systems of fabrication that takes into
account the trade-offs between flexibility and production ef-
ficiency. Our approach is based on the integration of new
technologies, both hardware and software, and it has been
validated through extensive experiments on a real-world flex-
ible system of fabrication. Hardware configurations options
are discussed and justified, as well as the development of
customised software components for image processing and
manufacturing system management, through the integration
of both proprietary/manufacturer and open source resources.
The results of our study demonstrate the effectiveness of our
proposed optimization approach in improving the performance
of flexible systems of fabrication.

The rest of the paper is structured as follows. Section II
illustrates several relevant publications that frame our current
technical and scientific contribution within the state-of-the-art.
Section III provides an in-depth description of the flexible
production system including conceptual design, architecture,
algorithms and methods. Section IV showcases the achieved
results in terms of operational improvements and monitoring
that result in increased overall performance. Section V high-
lights potential avenues for focused development.



II. RELATED WORK

Flexible manufacturing systems have gained significant at-
tention in recent years due to their potential to increase effi-
ciency and adaptability in production facilities and industrial
enterprises. Many studies have focused on optimizing various
aspects of flexible systems, such as their production capac-
ity, energy consumption, and maintenance requirements. [3]
showed the improvements on energy consumption of a flexible
control and monitoring framework when using a distributed
communication network.

One common approach to optimizing flexible systems is
through the use of simulation and optimization techniques.
These methods allow for the evaluation of different de-
sign configurations and operational strategies, enabling the
identification of the optimal solution that meets the desired
objectives. Some studies have employed mathematical pro-
gramming methods, such as linear programming and mixed-
integer programming, to optimize the allocation of resources
in flexible systems. [4] presented the results of a simulation-
based optimization for their manufacturing control system.
Others like [5] and [6] have used heuristics and metaheuristics,
such as genetic algorithms and simulated environments, to
search for near-optimal solutions in complex and dynamic
environments. In addition to simulation and optimization
methods, various control and scheduling strategies have been
proposed to improve the performance of flexible systems, just
like [7] showed in their paper. These include decentralized
control approaches, such as multi-agent systems and swarm
intelligence, as well as centralized control approaches, such
as model predictive control and discrete event systems.

[8], [9] address the problem of accurate object detection
using several models including Deep Neutral Networks (DNN)
and Convolutional Neutral Network (CNN). These models aim
to use an optimal learning rate, minimizing the cost function,
in order to achieve the lowest loss and the best accuracy and
precision. [10] concluded that robots often face unfamiliar
scenarios, leading to human intervention and implicitly wast-
ing time, resources, and energy. So they proposed through
their work the development of adaptive industrial robots using
Machine Learning (ML)/Machine Vision (MV) tools, through
which robots are able to make autonomous decisions during
sorting or assembly operations based on color and/or shape of
the test object. In previous work [11], a method to improve
productivity of a robotic assembly cell through the YOLO
framework for image processing and object detection was
presented. This led to vision-based control of the robotic arm
in the localisation and classification of assembled parts within
the workspace.

Despite the progress made in the optimization of flexible
systems, there are still many challenges to be addressed. These
include the complexity and uncertainty of the manufacturing
process, the integration of different optimization objectives,
and the need for real-time adaptability to changing conditions.

III. METHODOLOGY

Two reference configurations of flexible assembly line sys-
tems are used as benchmark for the integration, deployment
and validation of Industry 4.0/5.0 applications. These use
industrial grade components and systems and are shown in
Figure 1 and Figure 5.

Fig. 1: Flexible Assembly Line System (FAL) for Smart
Manufacturing

A. Standard FMS Platform

The fabrication line represents a research and training
platform which combines the fields of automation technol-
ogy, sensor technology, drive technology, mechatronics and
robotics in order to yield a fully integrated flexible system.
The initial workflow of the system is modelled by means of
a sequential state machine defined by the user on each of the
five stations of the assembly line: work pallet storage, base
piece storage, robot cell, top piece storage and final product
storage. Each station is designed as a stand-alone unit with its
own sensors e.g. inductive sensors, RFID modules, presence
sensors, and drive system e.g. conveyor belt, electric motor and
drive unit, all of them controlled by a Programmable Logic
Controller (PLC) [12].

The whole process is sequential, well defined from the
beginning, but nevertheless it can be improved in several
ways. The main challenge with this sequential programming
is the need for the industrial robot to search through the local
warehouse for the parts to be used in the manufacture of
the finished product. This greatly reduces the efficiency of
the process, since it follows several predefined trajectories
to perform the search, which can prove extremely inefficient
in the situation where the robot, for example, does not have
any parts in its local warehouse, it must checks all predefined
positions before signaling that the desired product cannot be
manufactured.

The machine vision subsystem is supplied by IFM and con-
sists of a master video processing unit, model OVP800, based
on NVIDIA Jetson TX2 hardware, that supports up to six O3R
series 3D cameras connected simultaneously. The processing



unit uses a proprietary operating system based on a Linux
distribution, which allows the use of modern technologies for
integration with industrial systems, such as the Robot Oper-
ating System 2 (ROS2) programming environment libraries
and the Docker utility. Python, C++ and CUDA software
development is also supported. For our application, this camera
master serves as both an image collection device and an image
processing device. The Docker virtualization software is used
to create a customized programming environment that allows
the integration of the system into the industrial application
through a dedicated communication protocol for the Siemens
PLC connectivity. The design choice was to keep the com-
munication standard already used on existing devices, namely
the PROFINET protocol from Siemens, implemented through
the python-snap7 library. The second reason we decided to
use a Python library was to be able to use this library together
with the ROS2 packages. Alternative options included Modbus
TCP/IP communication protocol, the OPC Unified Architec-
ture (OPC-UA) protocol, or even HTTP communication.

A challenge with the drive strategy used initially was the
need for the robot to search for available parts in the local
warehouse each time. A practical solution to this issue is
to specify before starting the manufacturing process which
parts are valid. This was achieved by placing one of the
cameras above the warehouse and developing software to
detect available parts.

The types of parts used in the robot handling stage have
similar shapes, with various colors, illustrated in Figure 2a and
Figure 2b. Industrial applications for the detection of colors,
shapes or irregularities are a typical use case of Industry 4.0.
The architecture of the IFM master is the same as that of
the NVIDIA Jetson Nano (arm64) development board, which
is important for the following steps because the IFM master
does not have a graphical interface where we could work to
view the images, nor does it have a very large storage to allow
installation of all image processing packages.

(a) Local Storage Camera (b) Conveyor Camera

Fig. 2: Camera images

For testing and development we used one such Jetson Nano
board, which we turned into a Node-RED server for remote
monitoring and control of the robotic station (Figure 3). To
process the images from the camera on the development board
we used the ROS2 specific communication protocols, TCP/IP

Fig. 3: FAL Flow

and UDP. Image retrieval is done automatically as long as
both devices are connected to the same network. To make
the connections of the devices to the robotic cell we used
a wireless router with four LAN ports and one WAN port
to connect the application to the Internet in case we need
to perform system updates. The communication diagram is
shown in Figure 4.

Fig. 4: System Network Architecture

The ROS2 development environment works through ”Sub-
scriber” and ”Publisher” type entities that exchange informa-
tion between processes. In our application, the main node
will operate both as a Publisher, to activate and deactivate
the cameras, and as a Subscriber, to retrieve the images from
the OVP800 master to the ROS2 node. Also in this node,
the communication with the SIEMENS PLC will be carried



out, integrating the PROFINET communication library with
the ROS2 development environment. Through this procedure,
the PLC can send requests to activate/deactivate the cameras
according to its needs. The warehouse camera is activated
when the user configures their product to check the availability
of parts in the warehouse, but also when the robot tried to
process a part and it failed it will send a new request to try
another available part. This exchange of messages between
the robot and the camera master is done through the PLC
since it is the core of the entire application and all devices are
connected to it. The main loop of the robot communication
routine is presented in Algorithm 1.

Algorithm 1 Main loop

Initiate ROS node
Create PLC communication client
Subscribe to camera topics
while Node running do

Keep PLC communication active
Read PLC requests
Write PLC responses
Operate the cameras

end while

Algorithm 2 presents the camera loop routine for basic
processing of the images and identification for positioning of
the collected parts.

Algorithm 2 Camera loop (each camera)

while Camera active do
Read image from camera
Process raw image
Convert image to HSV color space
Search colors within limits
Filter noise values
Check thresholds for each color
Identify pieces in matrix

end while

A straightforward color detection algorithm was additionally
implemented using the Python OpenCV library. The algorithm
is designed to identify and isolate specific colors within an
image, contributing to applications such as object recognition
and tracking. Leveraging OpenCV’s robust functionality for
image processing and computer vision tasks, our algorithm
uses color thresholds to segment regions of interest based on
predefined color ranges. The implementation involves correct-
ing the fisheye distortion effect, converting the BGR (Blue-
Green-Red) input image to the HSV (Hue-Saturation-Value)
color space, enabling more effective color representation and
segmentation, with robustness to light condition changes.
Through experimentation and optimization, we demonstrate
the algorithm’s efficiency in accurately detecting target col-
ors in diverse environmental conditions. The simplicity and
effectiveness of our approach make it a valuable tool for a

wide range of computer vision applications, particularly those
requiring rapid and reliable color identification.

The corresponding image correction and color correction
steps over the HSV image space are implemented as follows:
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Color detection algorithms face challenges such as varying
illumination conditions, sensor noise, and color similarity.
Therefore, it is important to evaluate the performance of color
detection algorithms using appropriate metrics and experimen-
tal settings. We propose four performance indicators for color
detection algorithms: detection error, response time, success
rate, and a statistical analysis over different light intensities.
Detection error measures the average distance between the
detected color and the ground truth color in a color space.
Response time measures the average time required to process
an input image and output a color label. Success rate measures
the percentage of images that are correctly classified by the
algorithm. Statistical analysis over different light intensities
measures how robust the algorithm is to changes in illumina-
tion, by comparing the performance indicators across different
levels of brightness and contrast.



B. Enhanced FMS Platform

The CPS for Mechatronics and Industry 4.0 training equip-
ment (Figure 5) emulates a highly automated factory, where
different types of products are produced, packed and shipped.
Its modular nature allows the user to configure the system
that best suits their needs, also enabling staggered growth over
time. Starting from an initial basic configuration, a subsequent
expansion is possible, adding new work stations and, therefore,
new technologies. The training equipment offers a professional
learning experience that matches the industrial reality, where
all the components are of industrial grade specifications. It
is a flexible system that allows the user to customise certain
parameters, such as the type of controllers used.

Fig. 5: Cyber Physical System (CPS) for Mechatronics and
Industry 4.0

The equipment consists of five stations that carry out a
different part of the assembly process as described in Figure
6:

1) Container feeding, checking and rejecting station: the
function of this station is to feed containers to the sys-
tem, which are stored in a gravity feeder. All containers
have an RFID tag that allows them to be identified and
traced throughout the whole process;

2) Filling feeding station: this station feeds basic fillings
from a vertical store and inserts them into the product
container. The quantity to be fed will be defined in the
RFID tag according to the product being manufactured;

3) Lid sorting and feeding station: this station feeds the
caps to an index plate where they are sorted (based on
their color: white, black and blue), then it fits the cap for
the product being manufactured, identified in the RFID
tag, onto the container;

4) Final inspection and rejection station: this station carries
out quality control of the product once assembled and
rejects it if the result of the inspection is unsatisfactory.
This process is made possible with the artificial vision

camera system composed of IFM OVP800 master and
O3R225 3D camera;

5) Robotic warehouse station: the function of this station is
to store finished products using the robotic collaborative
arm UR3e either in the local storage composed of 8
horizontal spaces or it can request support from a mobile
robot platform to get the whole order and deliver it.

Fig. 6: Process flow diagram

This whole equipment was configured to work together with
a manufacturing execution system (MES) which is layered
between the supervisory level and the management levels in
a typical automation hierachy as in Figure 7. MES solutions
typically operate with big volumes of data, so that a standard
database is always a necessity. For this application, SQLite
database technology was used to perform tasks such as:

1) Data storage: MES needs a structured storage system
to store vast amounts of real-time and historical data,
generated during the manufacturing process;

2) Data retrieval: MES needs to provide real-time insights
into the status of production and resource utilization;

3) Tracking and traceability: MES needs to track the
movement of materials, raw components and products
throughout the process;

4) Reporting and analysis: MES needs to generate reports
and perform data analysis to help with the decision-
making process, all to improve the overall efficiency;

5) Integration with other systems: MES can be often inte-
grated with other enterprise systems such as Enterprise
Resource Planning (ERP), Supply Chain Management
(SCM) or Quality Management Systems (QMS) and a
database can enable bidirectional data exchanges;

6) Historical data for continuous improvement: MES can
support improvement initiatives by analyzing trends and
implementing improvement strategies.

The integration of MES with SQLite database was per-
formed using the Node-RED environment as flexible and
efficient solution for managing data. Node-RED serves as the
orchestrator, facilitating communication between the MES and
the SQLite database. Through a visual programming approach,



Fig. 7: Automation Pyramid

Node-RED allows for creation of intuitive and customizable
workflows, as presented in [13], enabling the MES to interact
with the database in real-time. To enable the application to
interact with the industrial process we used OPC Unified
Architecture protocol to exchange data between our MES and
the field devices, namely the PLCs. This integration permits
storing and retrieving critical production information, such as
orders, production schedules and quality control data.

One of the typical Key Performance Indicators (KPI) in
optimizing a fabrication process is the the overall equipment
effectiveness (OEE) of the production process. OEE is a metric
that reflects the availability (A), performance (P), and quality
(Q) of the equipment and resources involved in manufac-
turing. A higher OEE value indicates a more efficient and
productive system. However, calculating and monitoring OEE
manually can be time-consuming, error-prone, and inconsis-
tent. Therefore, integrating a manufacturing execution system
(MES) application can be a valuable solution to automate
and standardize the OEE measurement and analysis. A MES
application can collect and store data from various sources,
such as sensors, PLCs, ERP systems, and human operators,
and use it to calculate the OEE and its components for
each equipment, line, or plant. Moreover, a MES application
can provide real-time feedback, reports, and dashboards to
visualize the OEE and identify the causes and effects of
downtime, waste, and defects. By using a MES application,
the managers and operators of a flexible system of fabrication
can gain more insight and control over the OEE and implement
continuous improvement strategies to optimize the system
performance and quality. OEE is computed as follows:

OEE = A× P ×Q

Availability(A) =
RunTime

P lannedProductionT ime

RunTime = PlannedProductionT ime− StopT ime

Performance(P ) =
IdealCycleT ime× TotalCount

RunTime

Quality(Q) =
GoodCount

TotalCount
IV. RESULTS

The results of the first optimization strategy were very
satisfactory as we managed to achieve all the objectives
we set for ourselves. We integrated the new IFM camera
system into an industrial application, solved a manufacturing
time optimization problem using artificial vision and image
processing algorithms, used several modern technologies for
opening the industrial system to IT platforms, and created
new further development possibilities for such a system. The
introduction of a secondary SCADA system for monitoring
and control was made possible with the help of the Node-
RED programming environment which locally launches a web
server that can be accessed using any web search engine, even
from a mobile phone. This server and the programs on it reside
on the NVIDIA Jetson Nano development board running under
the Docker virtual environment [6].

(a) Configure Commands Menu

(b) Energy Monitoring Menu

Fig. 8: Node-RED Dashboard

The video monitoring and image processing application
was developed and tested on the same NVIDIA Jetson Nano



board, and after validating the results, the programs and source
codes were transferred to the IFM camera master. To launch
the application automatically (plug&play operation) the same
Docker virtual environment was used with a custom image
containing only the bare essentials, since the available mem-
ory on the IFM master is, as mentioned before, insufficient
for all packages used in the application development stage.
The created image contains the ROS 2 Humble development
environment with C++ compiler and Python 3 packages,
the OpenCV library for image processing, the IFM library
of cameras that allows access to video streams from ROS,
the industrial communication library on PROFINET Python-
snap7, the ROS package for HTTP communication with the
Node-RED server and our backend application.

(a) Local Storage Im-
age

(b) Conveyor Image

Fig. 9: Processed Images

With the help of our image processing application, we have
significantly reduced the total manufacturing time of the prod-
ucts, which implies a decrease in the total energy consumption
and the degree of wear and tear of the equipment, but also
an increase in the productivity of the automated system. We
conducted experiments to evaluate the performance of the
proposed strategy and compared it with the baseline scenario
without the artificial vision system. The results are shown in
Table I, which indicates that the proposed strategy can achieve
an improvement of 15-20% in both production time and power
consumption, demonstrating the effectiveness and efficiency of
the artificial vision system for the optimization of the industrial
manufacturing process.

Artificial Vision No. Products No. Pieces Time(s) Power (W)
Off 2 6 153 435.08
On 2 6 121 364.92
Off 4 12 293 830.04
On 4 12 232 693.43
Off 5 12 317 913.11
On 5 12 254 754.82

TABLE I: Assembly Process Efficiency

We also developed a color detection algorithm that can
identify the parts used in the manufacturing process based
on the colors orange, blue and green in an image. We varied
the light intensity in the room to test the robustness of the

algorithm. The results are shown in Table II, which reveals
that the algorithm has a fast and consistent response time
with an average of 3.3 ms for all colors, regardless of the
light intensity. However, the detection error and success rate
depend on both the color we are trying to detect and the light
intensity in the room. The algorithm performs better on blue
parts when the lights are on, with lower detection errors and
higher success rates. On the other hand, the algorithm has
more difficulties in detecting the blue parts when the lights
are off, with higher detection errors and lower success rates.
This suggests that the algorithm is more sensitive to the hue
and saturation of the blue color than the other colors, and that
the light intensity affects the color representation in the image.

Color Detection
Error[%]

Avg. Response
Time [ms] Success Rate [%] Light

Intensity
Orange 17.7 3.30 97 High
Green 14.3 3.29 99 High
Blue 11.5 3.20 100 High

Orange 18.5 3.43 88 Low
Green 22.1 3.21 91 Low
Blue 19.6 3.32 92 Low

TABLE II: Color Detection Performance

A representative example can be seen in Figure 10 where we
chose the two stations to describe the utility of our application.
We see in Figure 10a that the station is working properly with
high Availability and Quality scores. However, there is room
for improvement in the Performance factor, which indicates
the speed of the production cycle. We propose to improve the
Performance factor by increasing the working speed of the
station. In Figure 10b we see good results in Performance
and Quality but with lower scores in Availability. This is due
to the fact that the station encountered technical problems
that required its closure to carry out maintenance operations.
Our application can detect these situations much faster and
thus helps to reduce the maintenance time and increase the
Availability factor. By implementing these improvements, we
expect to achieve higher OEE scores and optimize the indus-
trial process of manufacturing.

V. CONCLUSION

The work described the integration several technologies,
from the machine vision subsystem for image processing
to the remote monitoring and control application developed
on the NVIDIA Jetson Nano board running the Node-RED
server together with the MES application, in an industrial
manufacturing process. All this was achieved using advanced
IT technologies, Docker platforms, Robot Operating System
2 environment, Python libraries for industrial communica-
tions and image processing algorithms, Node-RED environ-
ment for back-end and front-end applications together with
SQLite database for a complete MES integration. The MES
seamlessly captured and organizes data related to production
orders, resource utilization and quality control, offering a
comprehensive overview that empowers decision-makers with
timely and accurate information. With this MES application



(a) Container feeding, checking and rejecting station

(b) Final inspection and rejection station

Fig. 10: OEE Indicators

we reduced the downtime and enhanced the overall equipment
effectiveness (OEE).

Our proposed solution to optimize manufacturing processes,
demonstrated on two pilot configuration of flexible manufac-
turing systems, has brought considerable improvements to the
automated systems, from decreasing manufacturing time and
energy consumption to opening up further developments. A
further application would be to scale up the application and
introduce it to full-scale industrial environments to evaluate the
impact on mass production. In addition, further research can
focus on the development of machine learning algorithms to
expand the range of applications of the artificial vision system.
To extend the color detection algorithm a further study can
incorporate a shape detection algorithm for a comprehensive
framework for object recognition and characterization. By
combining the color information obtained through the initial
color detection algorithm with shape analysis, we enhance the
system’s ability to discriminate and identify objects based on
both color and geometric features allowing for more precise

delineation of object boundaries [14] and enables a fully
automated application of quality control with fault detection
in the manufacturing process.
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