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Abstract—Devising robust energy management strategies for
sustainable future urban transportation systems requires in
depth understanding of the underlying generative data patterns.
Once quality datasets are collected and pre-processed, various
computational intelligence technniques can be applied to extract
actionable forecasts in order to improve the overall system
efficiency. We present a data science methodology for subway
rolling stock energy forecasting based on real collected data from
traction power transformers of two subway stations in the city
of Bucharest, Romania. The effect of variable passenger loads
is also investigated in a two-stage forecasting process involving
exponential smoothing filtering and regressive forecasting. The
main forecasting results yield a MAPE indicator under 0.2%
for both evaluated scenarios, with an improvement achieved
by integrating the passenger traffic as additional contextual
explanatory variable for the model.

Index Terms—energy forecasting, predictive models, exponen-
tial smoothing, machine learning, rolling stock, subway station

I. INTRODUCTION

A key pillar of the Green Deal [1] strategy is the investment
in energy efficient transportation systems. The role of light
urban rail and subway transportation systems is becoming
essential for lowering carbon emissions and traffic deconges-
tion which directly impacts public health and quality of life.
Reliable energy management strategies are thus required to
quantify and control the power consumption of such systems
in close correlation to the actual usage thereby increasing
overall efficiency. Achieving a thorough understanding of the
factors influencing subway transportation energy consumption
is also highly relevant in order to suitably dimension renew-
able and sustainable energy supplies within localized energy
microgrids.

Energy forecasting is a well established field which enables
robust control of energy systems through good quality esti-
mation of the future system variables and state. Two main
concurrent approaches rely on either statistical time series

models such as exponential smoothing (ES) and autoregres-
sive, moving average, models such as ARMA/ARIMA or
machine learning algorithms. In recent years a turning point
has been achieved in time series forecasting strategies as,
given the wider availability of rich, densely sampled datasets
and increased computational power, new machine learning
models have become competitive for out-of-sample/training
set forecasting accuracy. This includes both highly optimized
methods as linear regression, regression trees and support
vector regression and deep neural network models as universal
approximators for complex non-linear variable dependencies.

Alongside a typical time series autoregressive forecasting
strategy, we study the passenger load effect on subway rolling
stock energy consumption for energy management and fore-
casting purposes. As input data we use energy measurements
from one subway station in the city of Bucharest, Romania.
The measurements correspond to the traction power electrical
subsystem of the station and are largely determined by the
power consumption of the trains upon leaving the station, in
accordance with predefined daily schedules. The results are
replicable and extendable with minimal adjustments to other
subway stations in the same network for similar types of
rolling stock.

The contributions of this paper are argued to be two-fold:

• problem formulation and analysis of subway rolling stock
energy prediction based on a two-stage methodology that
combines exponential smoothing as input data filter with
machine learning algorithms;

• investigation of contextual explanatory variables, such as
time-of-day varying passenger loads on the prediction
performance.

The rest of the paper is structured as follows. Section II
presents a context of related work for both subway system
energy modelling and energy forecasting as a current relevant
topic for the scientific community. We present a detailed



methodology for data preparation, feature engineering, model
development and evaluation in Section III. Section IV illus-
trates and discusses the results obtained based on classical
performance metrics such as MSE/RMSE and MAPE. We
conclude the paper with the main lessons learned during this
study and outlook on future work in Section V.

II. RELATED WORK

Recent years proved to be very demanding in many sectors
under the recent renewable energy trends, especially in re-
search areas where a thorough need for new solutions has been
repeatedly emphasised. Thus, researchers and government
officials alike have turned their attention to important public
domains where potential for energy efficient solutions could
present a broad social, environmental and economic impact.
The public underground transportation sector, for instance,
was already regarded as an important power consumer [2]
and researchers have already started to investigate and identify
sustainable energy management solutions.

A natural step in this direction was to develop an in-depth
analysis over the structure of a subway station and its power
consumers and subsystems [3]. Such a study provided relevant
information regarding the power distribution inside a station
and consequently identified the traction power subsystem as
the most important consumer. Moreover, this analysis paved
the way for studies where both infrastructure related solutions
(such as renewable energy generation and energy metering, for
example [4]), as well as operational solutions (such as energy-
efficient train driving) were analysed, along with the efficiency
impact and implementation feasibility [5]. It was clear that
more research was needed in this direction to explore these
opportunities and analyse possible implementations.

From another point of view, studies involving modeling
and simulation instruments also provide important insights
and discussions [6] [7] [8], especially since they involve
modeling techniques, possible microgrid architectures and
suitable control solutions. However, to accurately assess if one
such solution is suitable for implementation, a thorough load
analysis must be conducted. This implies the usage of energy
forecasting techniques, machine learning instruments and time
series analysis that already have proved to be useful in other
energy sectors.

Deep learning methods for energy forecasting are de-
scribed in [9]. These are compared with classical methods
and the trade-off between model explainability with feature
engineering and increased accuracy through sequence models
is discussed. Several open source libraries have currently
become available which allow testing of such approaches
at scale given availability of quality datasets and compu-
tational resources. Local energy forecasting models for in
situ control are argumented by [10] where local inference
to predict and classify future anomalous power consumption
patterns is discussed. Cyber physical energy systems represent
a sub field of cyberphysical systems for bridging. computation,
communication and control, while relying on intelligent data
processing algorithms with applications in the energy domain

[11]. Modern neural networks for energy forecasting are
evaluated by [12] from the transmission system operator (TSO)
perspective in which large consumer, such as urban rail and
subway system can play an important role for reliable energy
management strategies such as load shaping or load shifting.
In a similar way, several first steps were taken in estimating
the consumption of a subway station with neural networks
[13], however simpler and more robust approaches must be
further investigated by taking into account the difficulties of
the data-gathering process for such a complex infrastructure
point.

III. METHODOLOGY

A. Load Forecast Proposed Procedure

To forecast the power consumption of the rolling stock
based on a priori measured load data, a suitable methodology
is proposed in Figure 1.

The first step is to analyse the available data in terms of
sample rate, date, time, also with a focus on possible missing
data and redundant parameters. The result expected here is a
data series based on a date-time composed index.

The second step is to transform the available data by adding
features for the model implementation. Feature variables rep-
resent attributes that describe a particular data point from a
specific point of view. For example, common time-related
features represent the day, hour or minute the measurement
was taken. Moreover, it is important to adapt the features to
a suitable format required by the prediction models.

The third step consists in applying an Exponential Smooth-
ing filter [14] in order to remove unnecessary time periods (for
example night-time consumption) and to obtain an adequate
profile for further forecasting. The new power profile is given
by the following Exponential Smoothing model:

ŷ0 = y0 (1a)
ŷt = α · yt + (1− α) · ŷt−1 (1b)

where ŷt is the estimated value at t, y represents the raw
measured value and α represents a smoothing factor between
0 and 1.

The fourth step focuses on a randomized split of the new
data into two sets:

• the training data set - used to determine the prediction
model parameters

• the test data set - used for model and metrics evaluation.
To better illustrate this step, the independent variable is con-

sidered to be X and the dependent variable will be addressed
as Y . In typical forecasting problems, the training and testing
data sets are determined with respect to the length of the initial
data set. More specifically:

dim(Xtrain) = nsizetest · dim(X) (2a)

dim(Xtest) = nsizetrain · dim(X) (2b)
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Fig. 1. Proposed procedure

where Xtrain represents the train data set and Xtest repre-
sents the test data set. nsizetest and nsizetrain represent the desired
size of the train and test data sets.

To determine the best load forecast, the proposed procedure
analyses three model types: linear regression, ridge regression
and lasso regression.

1) Linear Regression: Linear regression models are devel-
oped based on the hypothesis that there is a linear dependence
between the independent variables X = (x1, x2, ..., xn)

T

representing the model features and the dependent variable
Y . Consequently, the estimation Ŷ can be determined using
the following model:

Ŷ = a+B ·X (3)

where a represents the intercept and B is the model slope.
The best estimation is achieved through minimisation of

residual points representing the difference between the real
observed values vector Y = (y1, y2, ...yn)

T and the estimation
vector Ŷ = (y1, y2, ...yn)

T [15]. Thus, the objective function
can be defined in vector form:

E =

n∑
i

(yi − a−
p∑
j

xijbj)
2 (4)

There are also variations of the typical linear regression
model that imply a penalty over the model coefficients. These
variations are known in specialised literature as the Ridge
Regression and Lasso Regression [15].

The Ridge method minimises the residuals function consid-
ering a regularization parameter λ, such as Eq. 4 becomes:

Eridge =

n∑
i

(yi − a−
p∑
j

xijbj)
2 + λ

p∑
j

b2j (5)

The idea behind the Ridge Regression is to converge the
coefficients towards zero. A similar form that aims to penalize
the coefficients is represented by the Lasso Regression Model,
where the residuals formula becomes Eq. 6.

Elasso =

n∑
i

(yi − a−
p∑
j

xijbj)
2 + λ

p∑
j

|bj | (6)

The proposed methodology implements all three regression
models and a discussion is made upon the most important
evaluation metrics and whether a regression model is best
suited for rolling stock load forecasting. Standard metrics
are used for evaluating the regression models: Mean Squared
Error (MSE) - sum of squared bias and variance, Root Mean
Squared Error (RMSE) and the Mean Absolute Percentage
Error (MAPE) as relative performance indication. The metrics
are expressed as follows [16]:

MSE =

n∑
1

(yi − ŷi)2

n
(7)

RMSE =
√
MSE (8)

MAPE =
1

n

n∑
1

∣∣∣∣yi − ŷiyi

∣∣∣∣ 100 (9)

yi is the actual power value, ŷi is the output prediction at
time sample i and n is the sample size of the test set.

IV. RESULTS

A. Subway Station Power Flow Analysis

Figure 2 illustrates the active power flow through a typical
subway station from Bucharest, Romania. Power is provided
from the grid through one main power supply and multiple
power transformers are converting the energy to suitable
voltage levels.

Inside the station, power systems can be grouped in two
categories: traction subsystems and services subsystems. The
traction power is used specifically to power the rolling stock,
while the services power system have multiple purposes: to
power the lightning system, the automatic ventilation system
and all other auxiliary systems integrated in the station. These
two categories are separated since the rolling stock is powered
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Fig. 2. Typical Subway Station Power Flow Diagram

at 850V DC voltage and services are power in 400V 3 phase
voltage.

Another particular aspect regarding the subway station is
that each power subsystem has at least one auxiliary power
supply connected in case a system malfunction is present or
power is cut off. Also, in case of major system failures, energy
may be obtained from nearby subway stations thorough the
city distribution grid energy feeder management.

Analyzing the subway station power flow, the balance
equation can be written as:

PGrid = PTrain + PServices (10)

where the three variables represent the respective active
power for each power system. Since the main consumer of
a subway station is the traction power subsystem, the paper
will further focus on implementing the proposed methodology
for the load forecast of the traction side.

B. Measured data

Available data has been obtained through measurements
during a full working day, specifically on the power trans-
formers responsible with converting 3 phase medium voltage
power from the distribution grid to the 850V DC power for
the rolling stock. The measuring device is a Fluke 434 - II
Energy Analyzer and the sampling rate has been chosen at 30
seconds.

It can be noticed that the electric trains are functioning
from 05:00 to 23:00 and two power spikes can be identified:
one in the morning, between 08:00 and 09:00 and one in the
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Fig. 3. Measured traction load profile - 1 working day
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Fig. 4. Exponential Smoothing Comparison

afternoon between 17:00 and 18:00. Since there is no electric
train passing between 23:30 and 04:30 (maintenance work is
conducted on the rail so power is decoupled), it is clear that
there is no electric load during that time. However, energy
consumption increases in the morning and in the afternoon
mainly because these are the intervals during which employees
commute and passenger traffic has an important effect upon
train energy consumption. This is a first important insight that
will contribute to the forecast model development.

Also, passenger traffic in the station has been estimated from
hourly data acquired from the station access points during a
working day from the same month.

C. Data processing stage

In order to improve the forecasting model accuracy, data
must be specifically adapted through a noise-filtering stage.
Multiple variants of the exponential smoothing have been
analyzed, as it can be observed in Fig. 4.



As expected, decreasing the value of α in the filtering pro-
cess visibly increases data smoothness and removes unwanted
noise. However, a value of α that is too low may also remove
relevant features of the data profile such as the increase in
energy consumption during peak traffic hours. Also, it can be
noticed that the exponential smoothing filtering also removes
unnecessary consumption data acquired during the night.

For future model development, we considered that an α
value of 0.005 offers a good balance between filtering and
feature retain.

As for the feature engineering process, in order to corre-
spondingly assess the passenger influence in load forecast, two
scenarios are to be analysed: a scenario in which forecast-
ing models are developed based only on previous measured
samples and date/time related information and a scenario that
additionally includes passenger related traffic.

1) Scenario 1 - lag and date/time features: In this scenario,
the independent variable X has the features described accord-
ing to Table I.

TABLE I
FEATURE SELECTION FOR THE FIRST SCENARIO

Feature Description
yt−1 Consumption at t− 1
yt−2 Consumption at t− 2
hour hour in day

time of day Encoded between: morning,
noon, afternoon, evening

Considering these features, data has been splitted between
a training set and a testing set, with nsizetrain = 0.3 and nsizetest =
0.7, according to Eq. 2.

Consequently, linear regression models have been trained
on data. A comparison has been further established between
metrics (Table II), as well as between the predicted load
evolution and measured data from the testing set (Fig. 5).

It can be observed that, overall, linear regression models
offer very good performances in terms of MAPE, MSE and
RMSE, and also the forecast profiles are very similar in
evolution.

TABLE II
METRICS EVALUATION ON SCENARIO 1

Model Evaluation Metric Value
MAPE 0.192 %

Scaled Linear Regression MSE 65921.13 W 2

RMSE 256.75 W
MAPE 0.211 %

Ridge Regression MSE 72255.51 W 2

RMSE 268.80 W
MAPE 0.209 %

Lasso Regression MSE 68432.46 W 2

RMSE 261.60 W

2) Scenario 2 - lag and date/time features and passenger
data: The second scenario additionally involves passenger
traffic in the load forecast. In the same manner, forecast models
have been developed based on available training data in a
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Fig. 5. Scenario 1 - regression model performance comparison
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Fig. 6. Scenario 2 - regression model performance comparison

separate experimental case and in the end the models have
been used to forecast the load based on the testing data. A
comparison can be visualised in Fig. 6.

Metrics have been evaluated as well and a comparison
between the three regression models can be analysed in Table
III.



TABLE III
METRICS EVALUATION ON SCENARIO 2

Model Evaluation Metric Value
MAPE 0.185 %

Scaled Linear Regression MSE 64359.29 W 2

RMSE 253.69 W
MAPE 0.200 %

Ridge Regression MSE 70167.52 W 2

RMSE 264.89 W
MAPE 0.205 %

Lasso Regression MSE 64359.29 W 2

RMSE 253.69 W

By analysing the second scenario, it can be observed that
passenger traffic improves the forecast obtained by all models.
This is highlighted especially by the metrics, where an error
decrease can be observed especially in MSE and RMSE. Even
if the MAPE error decreases as well, it is important to account
for long term scenarios the MSE and RMSE errors. Both
indicators suggest that the passenger traffic should be clearly
included as a feature in forecast models. Also, the Lasso model
performances indicate that in this context it should be regarded
as a good alternative to the classic regression models, if it
is provided with a corresponding tuning mechanism of the
regularization parameter for long term simulations.

V. CONCLUSION

We presented a data science methodology for load forecast-
ing applied to subway traction power in urban rail systems.
A two stage data processing and modelling pipeline involves
first filtering the input values with an exponential smoothing
technique while subsequently applying robust regression tech-
niques for accuracy metric enhancement.

Forecast models have been compared through metrics eval-
uation and time a time series evolution comparison has been
conducted on a multiple scenario framework: a scenario with
standard time-related features and a scenario involving pas-
senger traffic.

Results indicated that monitored passenger traffic in the
station increases the forecast accuracy for all the developed
models and we concluded that it should be considered a
required feature from a robustness point of view.

Future work is focused on leveraging the best quality
forecasting in a data driven model predictive framework (DD-
MPC) for improved energy management at the subway system
level with increased usage of unreliable renewable energy
sources and localized energy storage.
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