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Learning Dominant Usage from Anomaly Patterns
in Building Energy Traces

Cristina Nichiforov, Grigore Stamatescu, Iulia Stamatescu, and Ioana Făgărăşan

Abstract— Building energy usage is growing at a rapid pace
under increasing urbanisation tendencies in both the developing
and the developed world, at high environmental and social
costs. Decentralised control architectures for local energy grids
are seen as a key solution to optimise energy management at
the local level. As the infrastructure for data collection, com-
munication and embedded computing becomes more capable,
new online algorithms can be deployed for forecasting and
anomaly detection of large consumers. Fine grained tendencies
and unusual artefacts can be thus exploited to improve local
and grid level energy management. Our two-fold approach
first leverages the Matrix Profile technique for time series
data mining to build a dataset of anomaly patterns from
public building energy traces and extract analytics information.
Subsequently the labeled dataset is used in a supervised learning
classification model to discriminate between various related
dominant usage patterns. The case study is carried out on
a public dataset of academic buildings. The approach can
prove useful for exploiting complementary energy consumption
patterns in a decentralised control structure towards grid
balancing and economic operation.

I. INTRODUCTION

An important challenge in handling large quantities of
data generated by modern measurement and control systems
within the Industrial Internet of Things (IIoT) and Cyber-
physical Systems (CPS) is to efficiently extract useful and
actionable information. This can be used in a timely manner
for online modeling with potential for energy savings and
technical benefits such as grid stabilisation. Several IIoT plat-
forms have been developed and made available for buildings
such as [1] that have the ability to transform both modern
and legacy buildings into ”smart” entities. The main goal is
to extend legacy building management systems with open
hardware components and software libraries for improved
data analytics. Extended data collection from more and
diverse buildings leads to improved algorithm performance
while some building-level test-beds are becoming available
as living labs and simulation platforms [2].

Many techniques are currently available for extracting
information from building time series data such as sensor
measurements and energy meter readings. These range from
basic statistical indicators, time domain features and fre-
quency domain features e.g. Fast Fourier Transform (FFT)
and wavelet coefficients. The main argument is that, by
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working on aggregated features instead of the full input
dataset, the algorithms will be sped up and made suitable
for online operation. In our case we use a time series
search and indexing algorithm called the Matrix Profile
(MP) which returns a distance time series as result of an
all pair subsequence search across the initial data. The
profile is computed in an efficient manner suitable both for
online operation and incremental learning. Applications are
documented for subsequence clustering and motif discov-
ery as well as anomaly detection. We use the respective
discord indices to discriminate between dominant usage in
large commercial buildings based on their electrical energy
consumption fingerprint. This can be useful for higher level
energy management strategies at the grid and city level that
can exploit complementary patterns, allow peak shifting or
other load balancing strategies for improved control.

Matrix Profile algorithm is basically a dimension reduction
approach, the anomalies are quantified by their distance
from existing data. The main hyperparameter of MP is the
subsequence length. In case of deep learning techniques, for
example Recurrent Neural Networks (RNN) can be used as a
predictor, wherein the difference between the predicted next
value and the actual value is used for anomaly detection.
These are more sensitive of the availability of a large and
diverse input dataset. A combination of MP and learning
algorithm can yield good classification outcomes while re-
ducing the time it takes to preprocess the data and for initial
training and retraining of the models.

The main contributions of the paper are two-fold:

• an application of the Matrix Profile time series data
mining techniques to large commercial building energy
datasets;

• using the resulting profile characteristics, in particular,
discord instances as proxies for usage-specific anomaly
modeling in a learning framework.

Section II describes the technical context of related work
given that data-driven methods for time series modeling and
information extraction have emerged as a feasible solution
for online operation. Section III discusses the methodology
which revolves around the Matrix Profile technique for effi-
cient time series data mining. The focus is on discord iden-
tification and classification across the used building dataset
with four classes of dominant usage: classrooms, offices,
laboratories and dormitories. Relevant experimental results
are presented in Section IV mainly related to analytical
insights and classification results. Section V concludes the
paper and lists directions for future work.
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II. RELATED WORK

Time series forecasting for energy applications is thor-
oughly reviewed in [3]. Three dominant methods are em-
phasised ranging from conventional (S)ARIMA models that
offer good performance with extensive expert knowledge and
limited generalisability, machine learning (ML) models with
dedicated feature engineering that capture domain expertise
and end-to-end deep learning models (DL), resulting in
highly complex black-boxes. An example of DL approach
is a two-level system with both RNNs for temporal level
features, and CNNs for extracting spatial level features. To
improve forecasting performance state of the art methods
rely on hybrid models have emerged that try to combine the
advantages of the most accurate methods and compensate
their disadvantages in terms of generalisability and periodic
retraining, mostly in multi-level data processing and model-
ing pipelines.

Unsupervised learning problems of building energy traces
[4] are focused on discovering spurious and recurring pat-
terns on historical data that can be used to improve diagnosis
and control tasks. Energy analytics clustering and motif
discovery is also an important at the system and grid level
[5]. Large consumer entities can thus be logically grouped
together to improve on energy management schemes such
as demand response (DR) and load shaping (LS). At the
subsystem level, data-driven AHU energy models are de-
veloped by [6]. As the heating/cooling subsystem is largely
responsible for most of the energy consumption of a building
[7], narrowing down the analysis to such units can improve
the understanding of the underlying patterns with a small
impact from neglecting the rest of the local consumers.

Availability of public benchmarking datasets on which
ML/DL techniques are evaluated is highly important for
replicability and scalability evaluation of the algorithms [8].
In the recent times many such data sets have been publicly
disseminated by public authorities and building technology
companies, either directly or through online competitions [9].
Other comparison in the security domain using MP derived
features is presented in [10]. The relevance here stems from
the periodic input time series that are analysed comparatively
against a labelled data set of attacks, events or anomalies in
our case, resulting in performance metrics for three types of
methods on three different datasets.

Some previous related work has been targeted at building
ARIMA [11] and NN [12] models for large commercial
building energy forecasting. This has used conventional
performance metrics such as MSE, RMSE, CV-RMSE and
MAPE to establish an own baseline against which future
improvements can be critically evaluated. NN and DL models
for building energy forecasting are compared in [13]. These
rely on new software libraries for efficient algorithm imple-
mentation and integration modules to retrieve the data from
online repositories. We now extend our focus to anomaly
detection and using the derived features for higher level tasks
such as mapping the dominant usage of building clusters
within a campus or a smart city.

III. METHODOLOGY

A. Matrix Profile

For feature extraction one promising approach is an online
implementation of the Matrix Profile [14]. This represents a
novel method for time series data processing. It consists of
efficient search algorithms that use a sliding window mech-
anism to create a minimum distance profile of subsequences
of length m over a time series of length n. The key speed-
up that is argued for this stems from the usage of the Fast
Fourier Transform for the z-normalised Euclidean distance
computation in the form of the following formula [14]:

D[i] =
√
(2m(1− (QT [i]−mµQµT [i])/(mσQσT [i])))

(1)
Where D is the distance between two subsequences Q and

T , using their dot product QT , m is the subsequence length,
µQ is the mean of Q, µT the mean of T , σQ and σT are the
standard deviations of Q and T respectively. In this sense
the algorithm is useful for both static data and incremental
modeling of streaming values with limited slow-down on
even very large and multi-variate time series.

In its basic form a time series motif is the closest (non-
trivial) pair of subsequences. The locations of the two
minimum values of the matrix profile are identified through
locations of the first motif pair. The subsequence that has
the maximum distance to its nearest neighbor represents the
time series discord. The discords basically capture the most
unusual subsequence within a time series. They have several
uses for data mining, but are particularly used as anomaly
detectors because they only require a single parameter which
is the subsequence length, unlike most algorithms used for
anomaly detection that usually require more parameters.
According to [15], a time series discord is defined as follows:
considering a time series T, the subsequence Q of length
n starting at position p represents the discord of T if Q
has the largest distance to its nearest non-self match; this
is ∀ subsequence C of a time series, non-self match MQ of
Q, and non-self match MC of C, min(distance(Q, MQ)) >
min(distance(C,MC)). Also, in the current research it is also
used the concept of K-th time series discord which has the
following definition: the subsequence D of length n starting
at position p of a time series T, is the K-th discord if D has
the K-th largest distance to its nearest non-self match, with
no overlapping region to the m-th discord starting at position
pm, for all 1≤m<K; this is |p− pm|≥ n. [14]

Besides the actual matrix profile, the matrix profile index
is also constructed to return the actual position of the nearest
neighbor subsequence. The variance of the profile can result
in the complexity while their histogram returns the time
series density estimation, also relevant for anomaly detection
tasks. We use the time series discord indices to extract local
anomaly energy consumption patterns that are input to the
classification algorithm.
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B. Classification algorithms

The goal of a classification model is to correctly assign
test examples to predefined labels or classes. In our case
the classes are defined as dominant usage patterns from the
original dataset. These are: 1 - classrooms, 2 - offices, 3
- laboratories, 4 - dormitories. Through the classification
model we aim at correctly mapping new energy traces to
one of the dominant usage classes, using a limited input set
of examples associated to the energy time series discords.
The usual performance metrics for evaluating classification
performance are: accuracy, precision i.e. accuracy of the
positive predictions, recall i.e. the sensitivity, true positive
rate, or the ratio of positive instances that are correctly
detected by the classifier, f1-score as the harmonic mean
of precision and recall. The confusion matrix is a tabular
representation to assess the classifier performance and derive
the metrics listed before [16]. Table I presents the structure
of the confusion matrix for a binary (two-class) classification
problem. The approach can be extended to a multi-class
problem by replacing the positive and negative classes with
the respective labels.

TABLE I: Confusion matrix

Predicted-Positives Predicted-Negatives
Actual-Positives true positives(TP ) false positives(FP )
Actual-Negatives false negatives(FN) true negatives(TN)

1) Accuracy: represents the ratio of number of correct
predictions to the total number of input samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Accuracy is not a good metric for evaluating classifier
performance in imbalanced datasets as by just predicting the
dominant class with yield a floor performance value. Better
classifiers can be however compared to this as a baseline.

2) Precision(P): represents the number of correct positive
results divided by the number of positive results predicted by
the classifier:

Precision =
TP

TP + FP
(3)

3) Recall(R): represents the number of correct positive
results divided by the number of all relevant samples (all
samples identified as actual positive):

Recall =
TP

TP + FN
(4)

4) F1-score: represents the harmonic mean of precision
and recall; the score is a number between 0 and 1:

F1 = 2 ∗ P ∗R
P +R

(5)

The F1-score is a way to balance the trade-off between
correctly predicting all instances of the positive class while
limiting the amount of misclassifications.

IV. RESULTS

A. Matrix Profile

The paper presents the experimental results of the de-
scribed approach on a reference building energy dataset.
The dataset used contains the energy consumption for 507
university buildings from Europe and USA over one year
period. The sampling time for each data-set is one hour and
the they consists of 8.760 data points. Four types of dominant
energy usage patterns were identified: classrooms, offices,
laboratories and dormrooms, for a subset of 422 buildings
that met out criteria. The data is slightly imbalanced as we
count 177 classrooms (∼ 42%), as the dominant class, 98
offices (∼ 23%), 86 laboratories (∼ 20%) and 61 dormitories
(∼ 15%). The input data is publicly available through the
Building Data Genome repository [17].

The Matrix Profile was applied on all 422 datasets and
Figure 1 and Figure 2 present the Matrix Profile result with
a monthly window length for two particular time series. The
first stems from a university laboratory in London, Europe
and the second one from a university office in London,
Europe. The readings cover the full year 2015. The figures
show also the top three discords which represent the highest
relative peaks on the Matrix Profile graph. For example, the
first discord in Figure 1 is correlated with the period of
Summer holiday spanning between 20 July and 31 August,
the second one is correlated with Summer half term holiday
between 23 May – and 31 May while the third discord is
correlated with Easter holiday in the period 28 March – 19
April.
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Fig. 1: Original Dataset versus Matrix Profile with top
Three Discords (Laboratory)

Figures 3 and 4 present the number of cases when the first
discord is correlated with the Summer vacation period and
the situations when one of the three discords corresponds to
the summer vacation, respectively. For this simulation there
were considered all 422 datasets grouped by each type of
dominant energy usage pattern: classroom, office, laboratory
and dormroom. From both figures it can be seen that in the
cases of ”Classroom” and ”Dormroom” bigger percentages
values in terms of discords associated with Summer vacation
were obtained than ”Office” and ”Laboratory” cases. One
potential explanation for this behavior is that during the
summer vacation there is not didactic activity but the offices
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Fig. 2: Original Dataset versus Matrix Profile with top
Three Discords (Office)

are still used by the professors and other technical staff
and also laboratories still have activity during this period
because they are used for research. We have run the MP
algorithm with daily, weekly and monthly windows lengths
for comparison purposes.
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Fig. 3: Number of cases when the top Discord is correlated
with the Summer holiday

Figure 5 presents a boxplot graphic of the matrix profile
values of all 422 datasets grouped by each type of dominant
usage of the buildings. It can be noticed that in every case,
either the one-day window MP or the one-week or one-month
window the MP is on average similar in case of ”Classroom”
and ”Office” groups. Significant differences occur in case
of ”Dormroom” group where MP values are higher. This
can be because the energy consumption pattern is based on
occupant behavior and is quite unique. It can be noticed a
slightly difference also in case of the ”Laboratory” group,
the explanation being correlated with the laboratory type,
the laboratory equipment and the activity that is held there
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Fig. 4: Number of cases when any Discord is correlated
with the Summer holiday
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Fig. 5: Boxplot with MP values grouped by 4 types of
building dominant usage

presents aperiodic usage variations, reflected in the behavior
of the energy use. The observations hold for each of the three
subsequence lengths: daily, weekly and monthly.

A histogram of the first discord occurrences across the
whole building energy dataset of 8760 samples is illustrated
in Figure 6. It confirms that the most unusual yearly be-
haviour occurs during December and is associated with the
Winter break and holiday period. Excepting this period, the
top discords seems to present an uniform distribution during
the rest of the year for all the studied buildings.

B. Classification

The hypothesis that we aim to investigate in this subsection
is whether a reduced input data set, based on the anomaly
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Fig. 6: Top discords distributions for weekly MP

instances detected through the MP, can provide useful dis-
crimination between the dominant usage patterns of each
building. For the classification task we build the training
frame around the top three discords for each of the 422
buildings thus resulting in 1266 examples. The size of the
dataset does not justify highly complex black-box models
such as deep neural networks. The variables used for training
include: the day of the week, month of the year and if it was a
weekend when the anomaly occurred, the momentary power,
the average, minimum, maximum, and standard deviation of
the power over the past 24 hours, the normalised power per
square meter of the building and the overall surface of the
building. All numerical variables are z-score normalised to
mitigate differences in absolute scale. The response variable
is a categorical feature with the values 1/2/3/4 corresponding
to the respective usage types. Several types of models are
trained based on decision trees, nearest neighbours, support
vector machines and ensemble models using classification
and regression trees (CART).

The result in Figure 7 show the confusion matrix for a
trained SVM model with Gaussian kernel. The ratios of
misclassified instances are illustrated and it can be seen what
are the mistakes that the classifier makes. The results show
a satisfactory improvement over random guessing as well as
baseline classifiers such as Naive Bayes.

The second example presents a restricted two-class binary
problem where the positive class is the classroom category
and the other three classes are group together. The receiver
operating characteristic for an ensemble classifier model with
∼ 81% accuracy and 0.73 area under curve (AUC) is shown
in Figure 8. The AUC quantifies the improvement over a
random choice denoted as the area over 45 degrees diagonal
that starts from the origin.

V. CONCLUSIONS

The paper investigated whether MP based discord features
are a good predictor for dominant usage patterns in large
academic buildings. The insight is that the unusual behaviour
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in terms of energy consumption patterns provides sufficient
discriminative information for reliable differentiation. The
results show an improvement in classification performance
using these features when accounting for a considerable
decrease in training time compared to using the full year
energy readings in the modelling stage.

The applicability of the approach can lead to considerable
impact on the control loop performance and in decision sup-
port systems [18]. Further on, we aim to exploit the potential
for application of the state-of-the art time series deep learning
models such as HIVE-COTE and InceptionTime [19] on
densly sampled energy measurement for anomaly detection
and classification.



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

REFERENCES
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