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Abstract—Emerging data analytics approaches applied in
power systems enable the extraction of relevant information
from large scale measurement time series. These can be used
to improve system observability and operation. Several open
datasets can serve as benchmark that allow comparative results
between pre-processing, modelling and evaluation strategies. We
present a data analytics application on high reporting rate
power measurements from single and multiple residential units.
Outlier detection to label anomalies in the time series can
be combined with automated machine learning libraries for
efficient forecasting and dimensionality reduction. We apply
this method for establishing an empirical relation between the
occurence rate of outliers in the measurement time series and the
forecasting performance. Results provide a discussion on the best,
domain-adaptive, parametrisation and modelling options which
are highly suited for power system measurements using open
source software libraries.

Index Terms—data analytics, anomaly detection, automl, smart
meter, power measurements

I. INTRODUCTION

Widespread adoption of smart meters and advanced me-
tering infrastructures (AMI) enable fine grained collection of
electrical energy measurement data with high temporal and
spatial resolution. Information contained in such datasets can
be efficiently processed and extracted for improved control
of power systems through state-of-the-art algorithms, models
and tools [1]. Online analysis of streaming data can contribute
to early warning of power quality conditions and transient
behaviours as well as potentially unstable conditions that have
a cascading effect on the larger grid environment. The chal-
lenge at high reporting rates lays in intelligent selection and
dimensionality reduction of the raw data that can selectively
include only the relevant features in the analysis.

As electrical measurements from power systems are usually
presented as uni- or multi-variate time series, appropriate
methods can be used to pre-process and model such datasets.
The addition of domain knowledge from power system spe-
cialists in the pre-processing and feature engineering stage
contributes to a more efficient approach by restricting the
experimentation to approaches that are relevant also from an
engineering point of view, in relation to the observed physical
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system. These are directly applicable consumers or the local
microgrid in our case.

Various methods for modelling time-series range from basic
statistic and econometric models, to conventional machine
learning models and end-to-end deep learning pipelines [2]
that automate the feature extraction and modelling. Current
software frameworks can help automate the testing and exper-
imentation of such models and guide the developer through
various parametrisation requirements in order to select the best
model that fits a particular physical system and its context
defined by the data. Outlier (Anomaly) detection is usually
implemented in a preliminary phase in order to focus the
processing on the particular features that characterise transient
or unforeseen behaviours thereby implicitly achieving dimen-
sionality reduction of the input dataset.

By combining anomaly detection with automated machine
learning, in the context of power systems measurements, we
aim to improve the data analytics approach for such data
and contribute to the real-time operation and control of local
microgrids. The presented use case is focused on single and
multiple residential units (student dormitories) by using a
previously deployed open metering infrastructure that enables
data collection and aggregation.

Main contribution are thus summarised:
• An approach to combine outlier detection with automated

forecasting frameworks that investigates the prediction
performance in relation to the number of outliers in a
measurement time series;

• An application of the proposed methodology and associ-
ated results discussion, considering various parametrisa-
tion options.

The rest of the paper is structured as follows. Section II
introduces the context of our work through related approaches
that focus on data analytics for applied measurements in power
systems. Section III discusses the main methods that were
implemented to achieve the improved auto-ml forecasting and
dimensionality reduction by outlier detection. The datasets
used and their collection is also presented here. Section IV
lists in depth the achieved results and provides insight into
the software and implementation and parametrisation of the
work. Section V concludes the paper with outlook on potential
practical value and extension of the approach.
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Fig. 1. AutoML pipeline for power measurement processing using outlier detection

II. RELATED WORK

An increasing number of interdisciplinary articles on smart
meter data analytics have become available at the intersection
of the power systems, measurements and computer science
domains. The focus on both the infrastructure and systems
to collect, store and analyse such datasets [3] and on the
methods and algorithms that are used to efficiently extract
relevant information and patterns from the collected data [4].
Embedded and real-time energy analytics [5] can be deployed
directly on the smart meter in order to use the local available
and increasing computing and communication resources and
online decision output at lower sampling periods.

A generic definition of anomalies in power system mea-
surement traces can be seen as ”patterns that deviate from a
well defined notion of normal behaviour”. In order to partially
mitigate the challenge of accurately identifying and labelling a
large number of anomalies in energy and power measurements
time series, the authors of [6] propose a method of modelling
and generating synthetic anomalies to improve machine learn-
ing model training. Such approach can be validated through
the statistical properties of the anomalies being considered or
through the help of domain experts. Bootstrapping or semi-
supervised methods are also available in which a small number
of labelled anomalies are available and their characteristics are
used to extrapolate and identify a larger number of occurences.
A high performance method for time series data analytics
(TSAD) based on the Matrix Profile data mining algorithm is
presented by [7]. The application concerns online streaming
data for which real time results are important through Discord
Aware Matrix Profile (DAMP) while the authors argue an
analytics throughput of over 3000000Hz on standard hardware.

Automated machine learning (AutoML) pipelines for fast
and practical evaluation of classification and prediction per-
formance is being increasingly used in diverse engineering
areas. Given a well formulated problem and an initial set
of models and hyperparameters, the approach can guide the
user to a suitable working solution. A reference is provided

in [8] where building energy forecasting is carried out with
good quantitative performance. The system is complemented
by explainable artificial intelligence (xAI) features that can
improve the understanding of the outputs by the end-user,
identifying the most important features in the determination
of the final result. Such methods can integrare both baseline
and state-of-the-art algorithms and combine their outputs, e.g.
through ensemble voting schemes, in order to provide robust
forecasting outputs over a wider range of input variability.

Previous works such as [9], in which discord labelling
through the matrix profile technique is applied, investigated
the stability of the detected anomalies under various noise as-
sumptions. In [10] the impact of the reporting rate of the input
energy measurement time series on the prediction performance
of various deep learning models has been investigated. In
[11] multiscale data analytics has been carried out in order to
evaluate the performance of various methods at representative
and domain specific time scales.

III. METHODS AND DATASETS

A diagram of the proposed system is shown in Figure 1. The
main four stages in the data processing pipeline are described:

1) Input Data: Power measurement values are read in
offline mode from text files containing the readings and
associated timestamps or directly, in online mode, by
querying the metering infrastructure or through database
Application Programming Interfaces (API); the values
are stored in structured format e.g. dataframe format, in
the development environment for the next stage;

2) Outlier Detection / Filtering: The anomaly detection
and labelling routing is run on the structured and cleaned
data; The datapoints that are identified as outliers are
properly marked;

3) AutoML: The automated machine learning procedure
involves training a number n of distinct parametrised
forecasting models on the datasets that include and
exclude the outliers from the previous steps; As an
optional sub-step, the predictions of the different models



can be combined by computing a weighted average of
the model predictions, using the inverse of the Mean
Squared Error (MSE) metric as weight; This step allows
the quantification of the outlier removal on the forecast
accuracy;

4) Forecast: The final forecast result is presented to the
end-user or provided to the decision and control system
for further processing.

A. Theoretical Background

The first step of our application uses the Hampel filter
method as proposed by [12]. The method uses a sliding
window applied to the measurement time series in which the
individual values are compared to the statistical distribution
of their neighbors in order to flag and replace the considered
outliers in the original time series.

The standard deviation of a data series is computed as
σ̂ =

√
1/n

∑
(xi − x̄)2, with n the number of observations

in the window and x̄ the window average. The Median
Absolute Deviation (MAD) indicator represents the median
of the absolute deviations from the median:

MAD = median(|Xi − X̃|) (1)

where the median X̃ = median(X). It quantifies the variabil-
ity of a univariate sample of data and it’s considered statisti-
cally robust. The MAD is linked to the standard deviation by
the formula:

σ̂ = k ·MAD (2)

where k is a constant scale factor with k = 1/(Φ−1(3/4)) ≈
1.4826 for a normal distribution. The quantile function Φ−1

represents the inverse of the cumulative distribution function.
The main input parameters for the Hampel filter are the

number of standard deviations and the window size, which
can be used to tune the algorithm towards a more restrictive
or more lenient detection of outliers. Filtering assumes that
once a value does not pass the test and can be considered as
an outlier, its value is replaced by the median of its neighbors.

Auomated machine learning increases the efficiency of
testing various configurations of machine learning pipelines
for engineering applications and can be used to improve and
aggregate prediction performance. The approach combines a
family of machine learning models and their parameters with
a higher level Bayesian optimisation layer which further op-
timises the hyper-parameters concerned with model selection
and evaluation. auto-sklearn [13] is a popular example of such
tool that employs meta-learning to optimise performance on
large datasets using a bandit strategy for budget allocation.
The predictions of the generated machine learning pipelines
can be combined through robust ensambling.

For time series data, the auto-ts1 package is a suitable
alternative to automate time series modelling and forecasting.

1https://github.com/winedarksea/AutoTS

Multiple pre-processing options, models, ensembling and eval-
uation metrics are supported in order to adapt the forecasting
strategy and improve it through domain expertise (process
knowledge). Several other packages have become available
that provide a similar approach which includes data pre-
processing, feature engineering, hyperparameter optimization,
forecasting method selection and forecast ensembling [14].

B. Data

Two residential active power measurement datasets are
used to illustrate our approach: an individual housing unit
(apartment) from Bucharest, Romania, and a multiple housing
unit building (student dormitories) from the campus of the
University Politehnica of Bucharest, Romania.

The first dataset is available on IEEE Dataport [15] and
includes 1s reporting rate active power measurements collected
over a period of several months. The main features are
determined by the household appliance consumption patterns,
with a few always-on appliances (refrigerator, wifi router) and
others which can be used periodically or only in a seldom
manner. The data is collect using a dedicated smart meter
extension module that interfaces through a communication
protocol with the smart meter, collects and stores the readings
for further processing. A condensed heat map monthly view
of the apartment data for the month of September 2020 is
presented in Figure 2.

Fig. 2. Monthly active power measurements for a residential unit

Fopr the second dataset we select four days of active
power measurement from the dormitories with a 2s reporting
rate. Figure 3 illustrates the original measurement time series
for these four days. Compared to the apartment, a much
higher baseline power consumption is observed given the size
and permanent occupancy of the building by several tens of
residents. Large seasonal variations are also observed based on
the heating/cooling requirements in winter/summer compared
to shoulder seasons.

IV. RESULTS

For obtaining the results, implementation has been per-
formed in Python in the Google Colab hosted notebook
environment. The data and the Jupyter Notebook code is
available on GitHub2 for replication of the figures and result

2https://github.com/grig101/amps23



Fig. 3. Daily active power measurements for a multiple residential unit building - student dormitories

tables. Main steps included data import and pre-processing,
e.g. timestamp formatting, outlier filtering and automated time
series forecasting. An initial example for using Hampel filter-
ing for outlier detection on the dormitory data from September
13th 2018 is introduced in Figure 4. The red points identify
the data points in the original timeseries for Figure 3 that have
been labeled as outlier using the current configuration of the
Hampel filter. The remaining blue line depicts the timeseries
with these outliers removed.

The overall outlier rate by using the standard parameters:
threshold for number of standard deviations (3) and neighbor
window size (15), ranges between 5 and 6 % for the analysed
days.

Fig. 4. Outlier detection using Hampel filter

We test the auto time series modelling method on both
the original and the Hampel filtered data with the following
configuration for the training stage:

model = AutoTS(

forecast_length=3,
frequency=’infer’,
model_list=’probabilistic’,
ensemble=None,
max_generations=3,
num_validations=2)

where model list denotes the subset of available models in
the auto-ts library, with a number of 430 models for the
probabilistic option. For computational efficiency, we do not
use the ensemble option while the number of validations is set
at 2, for improving model selection with limited penalty on
the performance. The sampling rate of the input time series is
inferred automatically from the DateTime index.

Figure 5 shows the day ahead forecast using the original
and filtered data for training at 20s time steps. This allows the
qualitative assessment of the prediction performance for the
original and filtered - outliers removed, input data, while the
quantitative metrics are subsequently introduced in Table I.

Fig. 5. Day-ahead predictions: original versus filtered data

The metrics used for evaluation during the model selection
include the following: Mean Absolute Error (MAE), Sym-
metric Mean Absolute Percentage loss (sMAPE) and Scaled
Pinball Loss (SPL), or Quantile Loss.



MAE only considers the positive variation between the
actual and forecasted values is computed as:

MAE =

∑n
1 |yi − ŷi|

n
(3)

with yi the actual value, ŷi the forecasted value and n the
number of samples.

sMAPE is computed as:

sMAPE =
1

n

n∑
1

|ŷi − yi|
(|yi|+ |ŷi|)/2

· 100 (4)

and represents a relative performance metric in which the
absolute difference between the forecast and the absolute value
is divided by half the sum of these values.

SPL function is expressed as:

SPL(u) =
1

h

∑n+h
t=n+1(yt −Qt(u))u1(Qt(u) ≤ yt)

1/(n− 1)
∑n

t=2 |yt − yt−1|

+
(Qt(u)− yt)(1− u)1(Qt(u) > yt)

1/(n− 1)
∑n

t=2 |yt − yt−1|

(5)

with Qt(u) the generated forecast for quantile u, h the
forecasting horizon and 1 the indicator function.

The values resulting from the AutoML step for the original
and filtered data are listed in Table I. The resulting best
probabilistic model is the Nonlinear Vector Autoregressive
(NVAR) model for this application. The first order NVAR
model is expressed as:

yt = f(yt−1, st) (6)

where yt = [y1(t), ..., yn(t)]
T are the observations and st =

[s1(t), ..., sn(t)]
T are the errors of the process at time t.

TABLE I
AUTOML FORECASTING METRICS RESULTS

Data Best Model MAE [W] sMAPE [%] SPL
Original NVAR 70.2 0.57 0.5
Filtered NVAR 69.5 0.56 0.485

The reported values correspond to the final, third, validation
step which improves the quality of the prediction.

The AutoML procedure covers three categories of models:
probabilistic, machine learning and deep learning algorithms.
The resulting effect of the filtering yields an improvement
in the prediction performance given increased robustness and
lower variability of the input data. The characteristics of the
determined outliers can be further used to quantify domain-
specific variability as additional features. Combining outlier
detection with the forecasting step results in improved perfor-
mance across several domains.

V. CONCLUSION

We present an approach to combiner outlier detection with
automated machine learning pipelines to improve the mod-
elling and forecasting of active power measurements. The
presented use case on single and multiple residential units
shows good results when comparing the original input and
filtered data forecast accuracy. Generalisation of the approach
to other datasets will be performed.
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