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Abstract—Deployment of high reporting rate smart metering
infrastructure together with a multitude of sensors for au-
tomation and control are an increasing trend among energy
communities and prosumers. These systems provide useful in-
formation for data-driven prediction and classification models
for micro-loads and local power generation. Matrix Profile is
a promising general purpose data mining technique for time
series data, such as electrical measurements from advanced
smart meters. In this work, we first describe the measurement
context that provides rich data availability for current advanced
energy analytics applications. We target power profiles for both
generation and load to highlight salient and complementary
characteristics thereof, which can be leveraged in applications
involving data-driven analytics for enhancing observability in
distribution grids. A sensitivity analysis investigating the chosen
method under various input noise assumptions is presented using
Monte Carlo simulation. The comparative results indicate the
relative robustness of the Matrix Profile approach for anomaly
detection tasks in energy measurements traces.

Index Terms—energy analytics, power measurements, time
series, matrix profile, anomaly detection

I. INTRODUCTION

Reliable and secure operation of modern power systems,
the so called smart grids vision, is an increasingly challenging
task due to several reasons: exponential penetration of variable
renewable energy sources (RES), the ever-increasing demand
for electricity, expansion and heterogeneity in terms of grid
interconnections, deregulated energy market conditions that
are revised continuously, among many others [1]. The greater
challenge comes from the lack of sufficient observability and
awareness on the dynamics of the power system especially
bellow the MV level [2].

Energy communities and prosumers in general are leading
the society efforts for the decarbonisation process of the
energy industry [3]. This trend is sustained by ever increasing
automation and modern measurement equipment deployed
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at prosumer level [1], [3]. Among the deployed intelligent
sensors and metering equipment, smart metering infrastructure
ensures the most popular source of data for applications
targeting especially home energy management systems [4],
for prediction models for load power profiles and/or power
profiles for local generation [5], or to enhance the distribution
system operator (DSO)’s awareness about the condition of the
part of grid under its operation [6], [7], among many others.

Advanced data analytics methodologies and tools applied
for RES assessment in distribution grids operation often
involve the application of statistical techniques, predictive
modelling, machine learning and deep learning, among others
[8]. However, they rely on the availability of large and diverse
datasets that can be processed and visualised, usually at
centralized locations, in order to provide adequate information
for improving or optimizing the system behaviour. Further-
more, besides availability of data, increased requirements
for communication and computing resources are needed for
selection and processing of this data such that to extract useful
information [9], [10].

The application of data analytics in an engineering con-
text for measurements in power systems can include time
series data mining for pre-processing, forecasting and anomaly
detection considering both statistical accuracy and compu-
tational efficiency [11]. This can be highly relevant in the
case of increased reporting rates featured by modern mea-
surement systems where the data acquisition and real time
processing of the data streams should be tightly correlated
in an adaptive manner [12]. A suitable illustration can be
done through micro-transient regime classification where the
algorithm should be able to label the incoming data within
the control system sampling period to achieve closed loop
behaviour [13].

By running the analysis in parallel for both generation,
of a photovoltaic (PV) system in this case, and load-side
power profiles, the goal is to highlight both the similarities, as
common characteristics, and the complementary components



that can be exploited in a joint analysis framework [?], [14].
To be noted that so far the literature investigating anomaly
detection in data time series for distribution grids focused
either on the load [15] or on the generation [16] only, or
the noise on the data was neglected. By emulating different
levels of noise in the input data, the aim is to evaluate the
robustness of a particular data analytics method under realistic
assumptions that are tied to the measurement uncertainty of
commercial grade energy smart meters. This is to be addressed
in this work.

We have investigated the performance of deep learning,
recurrent neural network, models for energy forecasting at
various reporting rates in [17] under the paradigm of multi-
scale analytics. The Matrix Profile (MP) [18] represents a
general purpose and computationally efficient time series data
mining technique which generates a companion time series
of distance metrics that characterise a vector of values. A
detalied description of the algorithm is presented in Section
III. Investigation of MP for smart meter data information
extraction has been previously discussed in [19]. In [20] we
have applied this to residential active power measurements,
to evaluate the effect of averaging and aggregation on the
analytical results. Using labeled anomaly patterns for building
energy data to infer the dominant usage was proposed in [21].
The contributions of the current work can be listed as two-fold:

• Parallel application of the Matrix Profile (MP) on com-
plementary power profiles of (PV) generation and micro-
loads for anomaly detection;

• Evaluating the robustness of the above-mentioned method
under varying noise/uncertainty assumptions to quantify
its robustness against the reported anomaly (discord)
patterns.

The paper is subsequently structured as follows. Section II
describes in detail the measurement context, including smart
meter design for collection of load - and PV power profiles,
that provides the quality datasets used in the analytics ap-
proach. Section III presents the matrix profile time series data
mining technique for pre-processing and anomaly (discord)
identification under varying noise assumptions. Results are
illustrated in-depth in Section IV for the two use cases of
choice: identification of anomalies and their distributions, as
sensitivity analysis. Section V summarises the findings and
presents the outlook for generalisation of the approach in
future work.

II. INFORMATION LAYER BASED ON HIGH-REPORTING
RATE MEASUREMENTS - METHODS AND DATASETS

The information used in this paper is for load and genera-
tion models derived from extensive local measurements using
Unbundled Smart Meters (USM) [22], set on 1 frame/s and
0.5 frames/s reporting rates, respectively. The USM consists
of a Smart Metrology Meter (SMM) and a Smart Meter
eXtension (SMX). SMM is the measurement part (metrology-
tested) with real-time functionalities, while the SMX is able to
extract, process and communicate the instrumentation values
provided by the SMM, with additional versatile features to be

Fig. 1: Simplified UPB campus grid topology

implemented during the energy-meter lifetime towards future
energy services and smart grid functionalities. In addition, the
power profiles extracted were enhanced with synthetic white
noise of an amplitude ranging from 2% to 5% of the recorded
power values. The range was chosen in accordance with the
accuracy class of the smart meters as to realistically consider
the uncertainties in the measurement chain. The smart meters
providing the information analyzed in this paper, are installed
in the campus of University Politehnica of Bucharest. A key
aspect for choosing the campus for the measurement campaign
resorts to the students living in the buildings, as they are a
relevant category of end-users. A simplified grid topology of
the UPB campus with associated energy meters is highlighted
in Figure 1.

The PV power profiles correspond to a roof-system active
in the campus.

A. Highly-variable, high-time-granularity load power profiles

To derive the load profiles, the energy meters were installed
in a 5-stories student building with 30 rooms and 60 students
per floor. The metering infrastructure consists in 15 single-
phase SLAMs (Smart Low-Cost Advance Meter) [23]. SLAM
is the new generation of smart meters which takes advantages
of new technologies in ICT and it is based on the smart meter
Unbundled concept, differentiating the two modules (SMM
and SMX). The SLAM meter is an advanced multi-function
digital single-phase smart meter Class B in active energy and
Class 2 in reactive energy, which complies with European
legislation related to energy meters (MID) EN 50470-1 and EN
50470-3. It includes the SMX module that allows development
of business related applications while allowing a multi user,
multi- protocol communications with the grid actors. The com-
munication of the smart meter with the exterior environment
is done while preserving on the user side a strong control
of data content and considering privacy and security aspects
for data exchange to support data protection regulation rules.
The micro-load on each floor is composed by specific profiles
for office appliances such as personal computers (PCs), TV,
refrigerator, air-conditioning, internet routers and lights. The
granularity of the load power profiles is set at a 2s reporting
time. An example of a daily load power profile, for one floor
and one phase (extracted from one of the SLAMs) can be
observed in Figure 2.
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Fig. 2: Daily power profile of one floor and one-phase,
extracted from one of the SLAM (2s resolution), in June
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Fig. 3: Daily power profile of a PV in UPB campus, 1kW
peak power (1s resolution), in May

B. Highly-variable PV power profile (1s-reporting time)

Local PV-generation has the power profiles based on daily
real information extracted from a USM-reported measure-
ments. The information is extracted from a high-reporting rate
measurement equipment consisting of a SMX connected to a
LandisGyr three phase meter [24]. with a metering accuracy
Class B for active energy and Class 2 for reactive energy.
The profiles were made available with 1 frame/s reporting
rate, and correspond to UPB campus location in Bucharest.
An example of a 1kW (peak power) PV system power profile
with 1s resolution is depicted in Figure 3. Given the short
distance between the 2 buildings, and similar shadowing, the
solar irradiance was considered the same as the PV system
was installed on the roof the student building we are studying
the load power profiles.

III. METHODOLOGY

Matrix Profile (MP) technique for time series data mining
was initially proposed in [18]. It is computed as a vector of val-
ues, obtained by sliding a window of size m over a time series
T of size n. The subsequence length m represents the single
parameter for tuning the method and can be derived either
automatically, by using domain knowledge, e.g. periodicity of
the underlying generative process or phenomenon, or through
visual inspection of the input time series. Each value in the

vector stores the minimum z-normalised Euclidean distance to
its neighbors. The Euclidean distance d:

d (Ta, Tb) =

√√√√ n∑
i=1

(Ta,i − Tb,i)
2 (1)

where Ta and Tb are two subsequences of equal length and
Ta,i and Tb,i are the i elements in the respective subsequence,
leads to efficient computation. Z-normalisation provides com-
parative results across time series. For implementation one can
choose between open software packages in python: matrixpro-
file and stumpy and also MATLAB and the Julia language.
Each package offers a choice of computational algorithms for
deriving the matrix profile, such as scrimp, scrimp++, stomp,
mpx, can be used to compute it for both offline and online
usage on streamed data.

For time-series T , two subsequences of length m, {Ta,m,
Tb,m} are considered a motif pair [19] if:

dist(Ta,m, Tb,m) ≤ dist(Ti,m, Tj,m), (2)

∀i, j ∈ [1, 2, ..., n−m+ 1] with a ̸= b, i ̸= j.
The subsequence with the maximum distance to its nearest

non-self match neighbor can be interpreted as an unusual
subsequence or anomaly and is denoted as a discord. Given the
time-series subsequence Tc,m of length m non-self matched
with Td,m and the subsequence Tp,m, non-self matched with
Tq,m, Tc,m we label a discord if:

min(d(Tc,m, Td,m)) > min(d(Tp,m, Tq,m)), (3)

with c ̸= d, p ̸= q and d a z-normalized Euclidean distance
function.

To check the sensitivity of the method concerning the
identification of anomalies (discords), we quantify its robust-
ness by adding synthetic noise traces to the original input
time series and evaluating the resulting profiles. This can
be achieved using Monte Carlo-like simulations [25] where
random-variability is inserted in the input according to pre-
defined probability thresholds and their effect and ranges on
the output is evaluated. In our case we apply Additive White
Gaussian Noise (AWGN) to the original time series with zero
mean and the standard deviation:

σ =
√
1/n

∑
(xi − x̄)2 (4)

with xi the individual values, x̄ the sample mean and n
the sample size. The selection of Gaussian Distribution is mo-
tivated by the source of data: non-calibrated instrumentation
values extracted from calibrated energy meters for a given
accuracy class. Because no distribution of errors is available
for the active power values, we considered the most favorable
case for the SMM. The robustness for varying noise levels
is evaluated based on descriptive statistics of the resulting
profile vectors and through the positioning of the time series
discords across the data. An additional pre-processing function
that includes an ’add noise’ parametrisation option is available



natively in the matrix profile library but has not been used for
this study given limited documentation available.

IV. RESULTS

To illustrate our approach we first run multiple simulations
on the micro-load and PV data described in Section II. For
each daily dataset 100 runs were performed. Implementation
was done using the Python programming language and suitable
libraries in Colab [26] a cloud hosted environment for code
notebooks. The code and data to replicate this analysis is
available online 1. The goal was to evaluate the stability of
the top discord identification as the salient anomaly identified
in the input data. We also quantify resulting profiles using
statistical indicators. The parametrisation of the matrix profile
computation is based on the optimal window size determined
beforehand using the mp.analyze function.

The sample visualisations are presented in Figures 4 and
5, corresponding to the load and generation scenarios respec-
tively. The figures both include multi-color line plots for each
of the MP run results on the noisy data series. The red star
markers pinpoint the top discord locations for each of the line
series. It can be seen how, in the first case, the top discord
position does not change significantly in the presence of noise
in the input time series. This is pointing to a strong discord.
For the case of PV data, there are two segments with high
matrix profile values: at the end of the time series and around
the middle; the added noise connects to a switch of the top
discord in a few cases only.
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Fig. 5: Matrix profile variability with top discord identification
- PV data

1https://github.com/grig101/amps22

We subsequently report descriptive statistics for both the
original matrix profiles and the averaged noisy profiles in both
situations with the goal of reporting to what extent is the input
noise replicated at the (MP) output. For the load data, given
a lower analysis window (222 versus 1842 considered for the
PV data), we observe a larger effect of the noise variability
on the output. The quantitative metrics for the matrix profiles
computed with this procedure are listed in Table I. The include
the sample mean, minimum, maximum, standard deviation, as
well as the 25% - 50% - 75 % quantile values.

TABLE I: Matrix profile statistics for load - and PV data

Statistic Load MP Load MP (noise) PV MP PV MP (noise)
Mean 9.19 9.56 55.02 55.06
Std 3.23 3.24 2.31 2.33
Min 3.05 3.22 48.39 48.39
25% 7.09 7.62 53.72 53.75
50% 9.33 9.81 55.61 55.65
75% 11.18 11.62 56.71 56.74
Max 17.6 17.55 58.07 58.06

For the anomaly sensitivity, we extend the analysis top three
discords for both cases, illustrated in Figure 6. The software
package also the setting of an exclusion zone, defined as
the minimum sample distance to an identified discord, where
a subsequent discord can be labeled. In the absence of the
exclusion zone parameter (Figure 6a), the discords tend to be
grouped together in a certain area of the data: the algorithm
identifies both the salient discord (the subsequence with the
minimum distance to its nearest neighbor) and its trivial coun-
terparts stemming from overlapping window subsequences. In
this case all the top three discords appear in a narrow segment
of the matrix profile around the area that was previously
observed for the top discord in Figure 4. By defining the
exclusion zone at the value of 100 for the load data we obtain
the result in Figure 6b with a better delimitation of the first,
second and third discord in different areas of the time series.
This can be useful for discriminating secondary anomalies that
might be hidden behind a dominant anomaly. The exclusion
zone value can be defined based on the window size input
parameter of the analysis.

Next, we apply various noise levels on the load and PV data
according to the limits of errors associated with an assumed
SMM accuracy class. The results are reported in Figures 7
and 8 and show the histograms of MP values for load 0%
- 2% - 5% noise levels and PV data at 0% - 1% - 2%
noise levels. The effects are mostly observed as a rightward
shift of the distribution of the values, with larger effects for
smaller analysis windows where the noise in the data can affect
the z-normalised euclidean distance metric to a larger extent.
The proportion of overlapping between the three empirical
distributions can serve as a quantitative metrics in the data
analytics evaluation pipeline. Higher noise levels are possible
in order to challenge the stability of the MP algorithm. Also,
other types of noise can be generated to assess the validity of
alternative hypotheses.
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Finally the discord analysis results are replicated for the
PV data in Figure 9. In this case the exclusion zone parameter
is increased proportionally to the different window sizes to
identify the non-trivial discord matches. The stability of the
third discord (blue square) is emphasized across the multiple
simulation runs. In this case the clustering of the top three
discords can be better observed than in the previous case.

V. CONCLUSION

The article focuses on extracting anomaly patterns, in paral-
lel for micro-load and PV data, from active power information
extracted as instrumentation values from a SMX using a
high reporting rate. The Matrix Profile (MP) time series data
mining technique has been deployed together with various
parametrisation options. The stability of the anomaly patterns
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was illustrated for varying underlying noise levels associated
with assumed measurement quality. One main finding is that
the method is robust to such input noise in the case of larger
window sizes that mitigate the effect of the noise on the
computed distance metric for the profile computation.

Future work will focus on extending and generalising the
approach over multiple measurement databases, including ag-
gregated net power profiles which are specific for prosumers.
The potential for computationally efficient and real time em-
bedded deployment into next generation smart meters will be
investigated. This would involve the provision of real-time
guarantees for the control loop execution in a hierarchical
power system with increased uncertainty from renewable gen-
eration.
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