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Abstract—Forecasting and anomaly detection for energy time
series is emerging as an important application area for computa-
tional intelligence and learning algorithms. The training of robust
data-driven models relies on large measurement datasets sampled
at ever increasing rates. Thus, they demand large computational
and storage resources for off-line power quality analysis and
for on-line control in energy management schemes. We analyze
the impact of the reporting interval of energy measurements on
deep learning based forecasting models in a residential scenario.
The work is also motivated by the development of embedded
energy gateways for online inference and anomaly detection that
avoid the dependence on costly, high-latency, cloud systems for
data storage and algorithm evaluation. This, in turn, requires
increased local computation and memory requirements to gen-
erate predictions within the control sampling period. We report
quantitative forecasting metrics to establish an empirical trade-
off between reporting interval and model accuracy. Additional
results consider the time scale variable feature extraction using
a time series data mining algorithm for multi-scale analytics.

Index Terms—energy forecasting, embedded inference, model
robustness, cyber-physical systems, smart buildings

I. INTRODUCTION

Using dense deployments of Internet of Things (IoT) de-
vices, multi-variate electrical measurements are being reliably
collected at ever increasing reporting intervals. This hap-
pens concomitantly with grid monitoring systems, at large
commercial consumers to the lowest level, at the residential
consumer. Making use of this dense data requires complex
intelligent algorithms for prediction and anomaly detection.
Many methods are described in the literature using mostly
deep neural networks as: Fully Connected Neural Networks
(FCNN) and sequence models such as Recurrent Neural Net-
works (RNN), Long Short-Term Memory Networks (LSTM),
and convolutional hybrid models (CNN-LSTM) [1] alongside
conventional machine learning methods as regression trees,
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support vector machines, etc. that allow fine grained control
over the input data through expert guided feature engineering.
For training of such systems, large amounts of quality input
data are required to capture fine grained nonlinearities over
various operating conditions. In some situations, like deploy-
ing models on resource constrained embedded hardware, there
is a need to downsample the measurement or sensor signal for
reduced training or inference time with bounded decrease in
forecasting accuracy.

We investigate the dependence of the energy prediction
model accuracy on the sampling interval of the input sig-
nal. This allows to adapt and fine tune the algorithm for
detecting and anticipating both fast transient phenomena, like
switching behaviour or faults, and more persistent changes
in the signal behaviour, like appliance usage in daily activi-
ties. This approach applies to both uni-variate measurement
time series (e.g., the power drawn at the electrical meter
of domestic houses), and to multi-variate measurements (e.g,
measurements of multiple electrical parameters, fine grained
submetering traces for individual appliances or for significant
consumers). These types of insights become also helpful
when setting up an IT system for data acquisition, storage
and processing of the electrical measurements, in conjunction
with the latency and off-line/on-line analysis of the results.
As the performance and complexity of modern measurement
devices has increased, the resulting collected information can
be classified using typical characteristics of big data in terms
of volume, velocity, variety, veracity, and value. This requires
specialized computing infrastructure and efficient primitives
for information extraction [2] leading to improved labelling
of relevant phenomena.

Motivation of the work is supported by the need of estab-
lishing a trade-off between cost and computational resources
for training data-intensive models and the desired application
accuracy for forecasting and classification. Novelty of the
contributions lays in the analysis of the effect that the reporting



interval has on the application of new deep learning methods
with smart meter data. This comes as a direct consequence of
the increase of smart meter applications not only at residential
level but also at the grid level. The issue that the study
deals with is at the convergence of measurement science, as
applied to power systems dynamics and computer science,
specifically machine learning algorithms as applied to energy
related measurements. Main tasks that are carried out to derive
the relevant results are as follows:

• A comparison on training and accuracy of four popular
deep learning (DL) models applied for energy forecasting,
using high reporting interval smart metering data;

• Illustrate an empirical dependence between the reporting
interval of input data and the accuracy of the model
(MSE, MAE, MAPE) along with a strategy for the
generalisation of such approach to different scenarios.

The rest of the paper is structured as follows. Section II
discusses related work mainly aimed at identifying suitable
time periods for training data-driven time series forecasting
models. We present the methodology, the algorithms and the
benchmarking of the dataset in Section III. Section IV dis-
cusses the results achieved for the target application, including
replicable implementation details. Furthermore, we provide an
exemplification of energy time series feature extraction using
the Matrix Profile algorithm at various time scales. Section
V discusses the foreseen context of leveraging the results to
automatically adjust the reporting interval based on required
performance in multi-scale analytics for energy systems.

II. RELATED WORK

Modelling and forecasting time series sampled at different
frequencies in a general econometric context is discussed
in [3]. The authors present their findings in the key that
by lowering the sampling rate of the respective time series
the core dynamic components remain observable while fine
grained and seasonal elements become unobservable through
aggregation. Disaggregation and establishing a correspondence
between the lower and higher sampled data can be realised
but requires a highly nonlinear model leading to inexact
matching and reconstruction. This insight can be used in our
technical context as well when discarding dense measurements
due to lack of storage or computational limitations. Relevant,
macroscopic scale, analysis on an energy system is presented
in [4], where the authors report the decrease in computational
requirements with various downsampling rates for renewable
energy generation. A nonlinear decrease in normalized CPU
time is reported when switching from 1h time-steps to 3,
6, 12 and finally 24h time-steps on 25 years of simulated
wind and PV generation data from the UK. The suitable
approach should be flexible to accommodate different input
data and constraints regarding the modelling technique. Our
goal through this contribution is to perform this approach at
the microscopic level for low voltage residential consumers
with different factors affecting the load shape, with second-
level reported measurements.

A statistical framework to select appropriate sampling rates
for time series analysis is introduced by [5]. The study
combines historical data sampled at a slow rate with cost
information for higher data rate collection, and a small subset
of more frequently sampled data. The relation between the
two can be framed as a missing data problem for the less often
sampled dataset. Specific methods such as spectrum estimation
and others can be applied to achieve a correspondence between
the two. For the particular context of power system analysis
(e.g, load flow calculations), the authors of [6] leverage
feature extraction to reconstruct synthetically representative
time series. The aim was to reduce computational demands
of the algorithms with bounded degradation of the quality of
models. Computational intelligence methods such as genera-
tive adversarial networks can be used to learn and extrapolate
measurement time series patterns (e.g., TimeGANs) for gen-
erating quality datasets [7]. In our case we use realistically
collected data in a residential context that could be augmented
with synthetic measurements using such methods.

In [8] 1s load power profiles for residential consumers are
analysed with the goal of detecting power steps in a sampled
load power profile. A noninvasive error monitoring technique
is devised through comparison of the tested and reference
meters by means of synchronized statistical methods on the
two measurement series. Smart energy information systems
design with IoT features and reporting interval discussion are
performed in [9]. Main contribution lays in establishing the
requirements of an Energy Information Management System
(EIMS) for large scale energy consumption in buildings:
hardware and software for data collection, transmission and
analysis. Embedded monitoring and control for energy storage
systems is presented in [10] using distributed sensor and data
acquisition nodes and hardware-in-the-loop type evaluation of
the performance.

III. METHODOLOGY

We briefly introduce the methods, the reference dataset and
associated metrics that we use for this work. Recently, many
data-driven methods for energy time series forecasting rely on
sequence learning models. These algorithms operate on subse-
quences of the input time series and can be used for both single
and multi-step forecasting or for classification tasks. Standard
implementation is in the form of recurrent neural networks
(RNN). RNNs are neural network architectures with built-in
loops, that allow the learning process to consider the time
dependencies between individual components. By contrast,
conventional neural networks use independent training per
component. In order to mitigate the negative effects that might
appear during training over long sequences (e.g., exploding
or vanishing gradients) more complex architectures have been
devised, such as gated recurrent units (GRU) and long short-
term memory (LSTM) networks. A common characteristic of
these structures is the use of dedicated ”gates” that control the
information flow through the networks, and include additional
trainable parameters for the gate weights. This allows the
network to propagate relevant information through multiple



time steps while selectively discarding irrelevant or redundant
extracted features. The basic LSTM cell [1] includes an input
gate (i), a layer input gate to update the cell state (g), a forget
gate (f) for discarding information and an output gate (o).
The state of the LSTM cell memory at time step t is updated
through the Hadamard product, as element-wise multiplication
of the matrix operands, as follows:

ct = ft ⊗ ct−1 ⊕ it ⊗ gt, (1)

The output state (h) at time step t is given by the output
gate (o) which implements a read function combined with the
cell state (c) as in:

ht = ot ⊗ tanh(ct), (2)

where the output is expressed as:

ot = σ(Woxt +Roht−1 + bo). (3)

based on the cell input (x) and with σ representing the
activation function of the LSTM cell, W the weights of the
cell, R the recurrent weights of the cell and b the bias terms.

Based on single layer LSTM networks, several variants are
available and implemented through specific software packages.
Further layers can be stacked for increased complexity and
the ability to extract more fine grained features. Bidirectional
networks are able to parse through the input sequences in both
directions. An adaptation of the convolutional layers, typical
for bidimensional inputs as encountered in image processing,
can be applied for time series models by assembling the
univariate input sequence vectors into bidimensional matrix
formats and applying the convolution operator for feature
extraction.

The dataset used in this study stems from a long term data
collection of energy measurements from a typical residential
appartment from Bucharest, Romania. The dataset is available
for testing purposes from the authors. For illustration purposes,
a daily plot of active power in Watts from the month of
September 2020 is shown in Figure 1.

Fig. 1: Sample input data

For evaluation of the energy prediction performance at
various reporting intervals we use the following metrics: Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE). MSE and MAE balance
small and large prediction errors, while MAPE provides a
relative metric of accuracy that can be used across different

scales of magnitude for the input. These are computed as
follows:

MSE =

n∑
i=1

(yi − ŷi)2

n
;MAE =

∑n
i=1 |yi − ŷi|

n
;

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ 100; (4)

where yi is the actual value of sample i, ŷi is the predicted
value of the sample i, and n the number of samples. In
particular for MAPE we use the Python sci-kit learn package
implementation1 which as a small error term in the denomi-
nator to avoid division by zero and numerical inconsistencies.

MAPE =
1

n

n∑
i=1

|yi − ŷi|
max(ε, |yi|)

(5)

where ε is an arbitrary small constant, thereby shifting the
interval of the relative metric from [0, 100] to [0, 1/ε].

A basic prediction example for the test set associated with
one day of residential power measurements sampled at 1s and
using a single layer LSTM network is illustrated in Figure 2.

Fig. 2: Prediction results

IV. RESULTS

For the purpose of our study, we have trained and evaluated
the following deep learning models: single-layer LSTM net-
work (LSTM-1), two-layer stacked LSTM network (LSTM-
2), bidirectional LSTM network (BiLSTM), and a hybrid
convolutional and LSTM network (ConvLSTM). The number
of units per layer is fixed at 50. For each of the models
we report the MSE, MAE and MAPE testing metrics at the
baseline (1s) reporting interval as well as 2x/5x/10x decimated
reporting interval. The first goal is to derive an empirical
relative dependency between the reporting interval and the
prediction model accuracy for these variations of state-of-the-
art deep learning algorithms. From the available data we estab-
lish a 70/30% split between the training and testing sets. The
random seed = 42 parameter is set for the implementation
to control for the randomness of the training and test datasets.
The training data is reshaped in a suitable manner as input
to the algorithms with the parameter n steps = 4 denoting
that each training example uses a sequence of four previous

1https://scikit-learn.org/stable/modules/model evaluation.html#mean-
absolute-percentage-error



values as input features. Each model is trained for 50 epochs.
Implementation is based on [11] using sci-kit learn v0.24,
numpy, pandas and keras packages on a server-class system
with Intel Xeon processor and 16GB RAM under the Linux
operating system.

Prediction test set accuracy results are summarised in Table
I-III for each of the available metrics. The hardware and
software dependant training time in Table IV is relevant
for relative comparisons between the trained model types
at different reporting intervals. In general the convolutional
variant of the LSTM prediction model yields the best results
albeit at very large training times. The bidirectional LSTM
model provides the best trade-off between test set forecasting
accuracy and training time in our study.

TABLE I: Test prediction results - MSE

MSE [kW 2]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 6.53 8.72 6.6 7.25
2x 16.36 15.59 16.46 15.92
5x 37.8 40.62 37 36.2

10x 62.46 61.52 65.48 60.12

TABLE II: Test set prediction results - MAE

MAE [W ]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 9.9 14 9.5 19
2x 25 24 26 19
5x 39 47 34 45

10x 55 58 92 59

TABLE III: Test set prediction results - MAPE

MAPE [%]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 0.032 0.032 0.027 0.069
2x 0.066 0.05 0.056 0.078
5x 0.13 0.12 0.095 0.1

10x 0.12 0.18 0.17 0.18

TABLE IV: Training Time

Time [s]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 2282 3990 3276 4025
2x 1304 2268 1492 2517
5x 581 1038 878 868

10x 187 408 289 357

Figure 3 shows the comparison between test MSE and
training time for the four models at various reporting interval
reduction factors. A light nonlinear relation between both the
error and decimation interval as well as training time and
decimation interval of the time series can be observed. We can
therefore reduce the input data reporting interval in accordance

Fig. 3: MSE versus training time results

to the dynamics of the observed measurement phenomena with
bounded decrease in MSE.

We attempt to further validate and generalized the study
results by running one of the models (BiLSTM) on a full
month of data as global model. The model is chosen based
on the previous results that show the best performance in the
trade-off between the decrease in MSE versus the increase in
training time for a more complex model, over the various in-
vestigated reporting intervals of the data. The same parameters
are kept, in particular the sequence length for the n steps = 4
parameter. The global approach is tested on the baseline
reporting interval (1s) and the 10x decimated reporting interval
(10s). The model structure with 20901 trainable parameters
is presented in Figure 4. The model includes an input layer
at the top of the diagram which receives training examples
of four timesteps each. These are passed to the core hidden
bidirectional LSTM layer which processes the data and feeds
the output to a dense, fully-connected, layer. The output of
this layer represents the final scaled energy prediction for
the respective example. Model training attempts to identify
the optimal model parameters (weights and bias terms) that
minimize the average error over all the training examples.
In the case of regression problems, the usual metric for
optimization is the mean squared error.

Fig. 4: BiLSTM global model structure

Figure 5 illustrates the training loss (i.e. MSE in Watts
for our application) for the baseline model over the training
epochs. The global model - 10s achieves MSE = 10kW 2

and MAE = 24W , while the global model at the baseline
reporting interval of 1s achieves MSE = 0.910kW 2 and
MAE = 2.49W . Training time for the decimated model
is t = 8400s, while for the baseline model we use an
early stopping criterion to stop the training once there is no



significant decrease in the loss over multiple training epochs
using the patience = 3 callback parameter.

Fig. 5: Training loss for monthly global model (1s)

Individual models for a full month are also trained and
tested, composed of 30 daily subsequences, corresponding to
the month of September 2020, at the baseline and 10x deci-
mated reporting intervals. The aggregated results are presented
in the form of testing MSE metric histograms over the 30
individual models in Figure 6. Top 15% of the outliers have
been eliminated from the error array. Further, segmentation
of time of day and day of week models is possible for more
specific forecasting performance. Reducing the variability of
the MSE can be achieved for the residential energy use case
by including contextual variables and time series in the model
such as outdoor temperatures, albeit with increased complexity
that can be quantified with regard to the provided benefits.

(a) 1s reporting interval

(b) 10s reporting interval

Fig. 6: Testing MSE distribution for independent daily models
over one calendar month

We also present a Matrix Profile (MP) exemplification at
the 1s reporting interval for multi-scale feature extraction
applied to energy measurements. This is an efficient time

(a) Daily sequence

(b) Monthly sequence

Fig. 7: Matrix profile for anomaly detection

series data mining method which allows feature extraction and
anomaly detection over large series. The algorithm outputs the
minimum sequence by sequence Euclidean distance based on a
single parameter, the subsequence size, which is used for find-
ing motifs, recurring patterns in the series, and discords, the
most dissimilar patterns. Figure 7 (a) illustrates the computed
profile for the baseline interval while identifying the most
dissimilar sequence in the original daily data - corresponding
to the readings at noon from the daily series. In Figure 7
(b) a similar analysis is performed for the monthly series
at a similar reporting interval where the daily variations are
reflected in low values of the profile. The main result here
is the identification of the first day in the month (September
1st) as the most dissimilar sequence in the full measurement
series.

V. CONCLUSION

We have investigated the performance of various types of
deep learning models on residential energy measurement data
at various reporting intervals. The goal was to establish an
empirical relation useful for choosing the appropriate amount
of data required to train a good quality model while consid-
ering the limitation of available computing resources. Future
work will consider extending the study to publicly available
benchmarking datasets such as Pecan Street Dataport [12]
and use the derived results to guide a energy time series
classification framework for steady-state evaluation on multi-
variate data.
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